THE ART OF MAKING TRAPS

By iw2fnd Lucio

The Ideal Trap

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \ [Hz]$$

$$f_0 = \frac{1}{2\pi\sqrt{LC}} \sqrt{\frac{\frac{L}{C} - R_{Ls}^2}{\frac{L}{C} - R_{Cs}^2}} \quad [Hz]$$

DYNAMIC RESISTANCE

$$R_{p0} = \frac{R_{Ls}R_{Cs} + \frac{L}{C}}{R_{Ls} + R_{Cs}} \quad [\Omega]$$

PARASITIC ELEMENTS		
INDUCTOR	CAPACITOR	
$R_{Ls} = \frac{2\pi f L}{O_L}$	$R_{CS} = \frac{1}{2\pi f C Q_C}$	

Design Phases

- 1. Selection of the Center Frequency and Capacitor;
- 2. Choice of Materials;
- 3. Inductor Design Calculation;
- 4. Practical Construction of the Inductor;
- 5. Assembly and Bench Tuning of the Trap.

Selection of the Capacitor

https://www.ari-scandiano.org/

Selection of the Capacitor

Selection of the Capacitor

Inductor Dimensioning

Selection of the Center Frequency

Choice of the Coil Former

Material	Dielectric Type	Freq /	€I [*]	Tané	Dielectric strength / kV/mm	resistivity, // One
ZEA	1	60	2.4 - 3.0	0.003 - 0.008		
(acrylonitrile-	Polar	1k	2,5 - 3.0	-	1 - 1	1014
butadiene-styrene)		IM	2.4 - 3.8	0.007 - 0.015	1	
Actylic	Ì	60	3.5 - 4.5	0.04 - 0.05	†	
(polymethyl-		J.k.	3.5 - 4.0	0.040	- - - -	*16 ³⁵
turiban ylaba, Peraper, Larita,	Paler	THE	3.0 - 3.3	0.02 - 0.000		
Pippialusi		1004	3.5	0.006		
20FC		KG	2.39	0.000		
HIYE	Ì	tk	2,5	4.006	ĺ	
fetto/setse-	al grady	1146.	ZS	6/6/35	260 (1 mil)	ggate
seminorally ess	Dogs.	323	2.4	COORS	160 (1 mil)	248
enpelytoni, 19feel)		860	4.0 ~4.5	9.004 - 0.04	-	766 60 1
ishfina-iid (militany, typical)	Pelar	1361	3.4 - 3.8	0.04	4	1.0 ⁽⁰⁾ -10 ⁽¹⁾ -sh
(State)	T. ANSWER	TEEM	3/4 - 3/4	0.02	1 - 1	20200ED
, out out	-	50	3.2	0.002	ł	. au
THE		ik:	3.2	0.0%	4	
(polyethylene- terephthalaic,	Pofer	IM.	3.0	8,01,6	308)(lmi2)	1805 - 1803
palpester,	3,29087	106%	2.9	487121	134 (Smil)	735. 4 735.
Myllar), 20°C		123	2.8		4	
44/80/44/	-	100	3.2	0.001		
PEEX (polyeder eiber keams)	Pelier	I hA	3.2	0.007	34 G mmi	Diggs.
Palveerbacete		60	3.17	0.5909	-	
(PC, Lexan, Merlon,		1k	2.99	0.8015	* *********	2×10**
Tuffak)	Polar	IM	2.93 - 2.96	0.019	. 250 (1 coll) මම (5 mill)	
tytical		163	2.80	9.912	EST (3.112.0)	
20°C		1,63		MANUZ	12 8000 000 400	
Polyethylana (Polythene, PH) 20°C	uga- uga-	50 - LG	2,2-2,85 typ 2.3	50,0003	200 (i mil) 120 (i mil)	1014 - 1013
Polypropylene	non-	59-10	22-26	≤0,0005	186 (5 mH)	1013 . 1025
CLLA SOLC	Dayen.		25-24	590 U.0000		
Prostones		30-10		0.09292 - 0.00303	{	
(75, Obstrue, Vinne, Trofind) APC	ton- polar	126	2.56	0.0000	(the t) 00%	18 ²⁰ - 18 ²⁰
		10094	2.59	0.0003	{	
z TZH (pelg- man Parawa) ylama. Takani, 24 C	polic polic	166 50 - 30	20-21	59939	80-90 (1 ml) 40 (3 ml)	1977 × 1978
PVC plantiens	Î	Ðε	4.0 - 8.5	9.05-6.16	60 (5 mil)	5x10° -5x10°
	Polar in	in	33-45	0.04 - 0.14		
20°C		XOM	4	0.06	1	- 0x10m
	1	50	3.2	0.02	1	
PVC-U (unplasticised) 20°C	Polar	1k	3.0 - 3.3	0.009 - 0.017	55 (5 mH)	5×19 ¹⁷ - 19 ¹⁴
		1M	2.7 - 3.1	9:996 - 9:917		
		10064	2.8	0.01		
		1G	2.8	0.019	1 1	

Choice of the Coil Former

E. Material selection by loss tangent.

Lossy	Good	Excellent
$Tan\delta \ge 0.01$	$0.01 > Tan\delta \ge 0.001$	Tanδ < 0.001
(δ ≥ 0.57 <u>°</u>)	$(0.57^{\circ} > \delta \ge 0.057^{\circ})$	(δ < 0.057° <u>)</u>
Fibreglass (GRP)	ABS*	Vacuum
Nylon	Acrylics (Perspex, Plexiglass)*	Air
PVC	Glass, Porcelain	Mica
Phenolic (SRBF, SRBP)	PET (Mylar, polyester)	Polyethylene (PE)
Rubber	Polycarbonate (Lexan)	Polypropylene (PP)
Neoprene	Silicone rubber	Polystyrene (PS)
Wood	ETFE (Tefzel)	PTFE (Teflon)

^{*} Borderline performance. Tail-end of low-frequency dispersion occurs in HF range.

MATERIALE	g/cm ³
PolyEtylene (PE)	0,94 – 0,96
PolyPropilene (PP)	0,90 – 0,96
Teflon (PTFE)	2,18 - 2,20
PolyVinilCloruro (PVC)	1,35 – 1,45

F. Weathering and high-temperature limits of plastics and rubbers.

1. Weathering and high-temperature limits of plastics and rubbers.				
Material	Water absorption (Saturated)	Melting or softening temp. / °C	UV Resistance	
ABS	0.6 - 1%	Softens >77	Fair	
Acrylic	0.3 - 0.4%	Softens 180	Good	
ETFE	< 0.02%	Melts 270	Fair - Good	
Nylon 66	8.5% saturated (2.5% @ 50% RH)	Melts 218		
Polycarbonate	0.35 %	Softens 132	Fair	
Polyethylene	< 0.01%	Melts ~133	Poor* - Fair	
Polypropylene	< 0.03%	Melts 168	Poor* - Fair	
Polystyrene	0.04 - 0.1%	Softens ~98	Poor - Fair	
PTFE	0	Melts 327	Very Good	
PVC (plasticised)	Negligible		Fair	
PVC-U	Negligible	Softens ~80	Fair - Good	
Rubber (Natural)		Decomposes	Very poor	
Neoprene		Decomposes	Poor	
Silicone Rubber	~0	Thermoset	Good	

Sources for table F: Refs [40], [8] + practical experience. UV Resistance: Good = no significant change in properties on prolonged exposure. Fair = changes in surface properties or transparency, but maintains structural integrity. Poor = becomes brittle and disintegrates.

^{*} Basic UV resistance may be improved by additives. Addition of carbon black gives UV resistance by preventing light penetration but increases Tanδ.

Inductor Design Calculation

$$L = \mu_0 \mu_r \ N^2 \frac{A}{l} \ [H]$$

Coil Former Preparation

Sezione	Diametro Esterno [mm]	
Cavo FS17		
1x1,5	3,0	
1x2,5	3,6	
1x4	4,1	
1x6	4,6	

Calculation of the Unloaded Q of the Trap

$$Q_u = \frac{Q_L Q_C}{Q_L + Q_C} = \frac{237 \cdot 16271}{237 + 16271} = 233$$

$$BW = \frac{f_0}{Q_u} = \frac{3850}{233} = 16,5 \text{ kHz}$$

Measurement of the Unloaded Q of the Trap

Attenuazione almeno -30bB

$$Q_u = \frac{f_0}{BW}$$

Trap Impedances at 3810 kHz

