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Generalities 

I’m writing this short article to clarify some useful formulas for the calculation of ferrite impedance transformers 

used in antenna systems. This passage has a merely practical application (the core of this exposé is the example 

of its practical realization at the end of it) and it simply aims at presenting the problem without necessarily being 

a strict academic discussion. It goes without saying that a bibliography can easily be found at at the bottom of 

the passage for whoever would want to dive deeper into the topic.  

Theory 

Let’s take into consideration the power supply system of an antenna such as the one shown in figure 301; where 

the antenna is just a resistance it can be represented by its equivalent Thevenin [1], with the impedance ZL=RL, 

which is supplied by a transmission line having the same characteristic impedance of the antenna Z0 being Z0=RL. 

In this condition we are able to obtain the maximum power possible from the line to the antenna because we do 

not experience any wave reflection on the line itself (let’s assume that the power supply is impedance matched 

for the line). Yet, often times obtaining the perfect match between the line and the load cannot be possible 

because commercial lines have the characteristic impedance Z0 which is not equal to RL. In this latter situation, in 

order to get a broadband match from line to load, an impedance transformer has to be placed at the height of 

the antenna connector. The transformer shows the load Zb to the line, the real part Rb of which is equal to the 

characteristic impedance of the line (figure 302).  

Occasionally, an autotransformer is used in place of a transformer (which has two windings galvanically 

separated) to reduce the parasitic elements, even though it only links the secondary winding to part of the 

primary one; therefore, the balancing effect between the input and the output resulting from the galvanic 

separation is annulled. That’s the price to pay.  

 

The transformer (as well as the autotransformer), not only does it transfer energy, but it also converts the load 

impedance ZL to be as close in value to the characteristic impedance of the line z0. The link between the two 

impedances (in this case only resistances because we assumed that the antenna is a pure resistance) is standard 

for a transformer.  

Lb ZnZ
2=                 (n is the turns ratio between n1 and n2) 3.0 



 

Referring to figure 303, the load impedance ZL, consisting only in its real part RL it is seen at the connecting 

terminals B-B’, as equivalent to the real part Rb with the magnetizing reactance of the primary winding Lm in 

parallel, followed by an ideal transformer (figure 304).  

 

 

 

 

 

 

Therefore, the equation that links the two real parts RL and Rb deduced from 3.0 is: 

Lb RnR
2=  3.1 

The magnetizing inductance Lm is deduced from the self-inductance of the primary winding Lp which is linked, in 

turn, to the building criteria of the transformer itself. 

When the transformer is completed if we measure the inductance of the primary with the opened secondary, 

we obtain the LPO value, whereas with the connecting terminals of the secondary in power surge we obtain the 

LPC inductance. From these two inductance values we obtain the coupling factor k. If the transformer is well built 

the coupling factor turns out being around 1, so we can consider, with good approximation, the self-inductance 

of the primary winding to be equal to the magnetizing inductance Lm of the transformer.  
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Once we have the coupling factor k between primary and secondary winding, we can obtain the magnetizing 

inductance Lm from the following formula:  

00 PPm LLkL ≈⋅=  3.3 

The circuit in figure 304 shows the simplest model for a transformer. Therefore, the supply line in figure 302 at 

the connecting terminals level B-B’ will be equivalent to the load shown in figure 305; if the transformer is well 

regulated, the load impedance converted to the primary Rb will correspond to the characteristic impedance of 

the supply line Z0.  

 

 

 

 

 

 

 



However, the placing of an impedance transformer between the load and the supply line produces an undesired 

inductance in parallel. Moreover, the said inductance causes a mismatch between the load and the line. The 

mismatch causes an energy reflection towards the generator and consequently the production of a stationary 

wave and an SWR on the line.  

Hence, at the connecting terminals B-B’ we will find an impedance Zb that is equal to the parallel resistance Rb 

and the inductance Lm:  
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Accordingly, the coefficient of reflection Γ (Γ reads ‘gamma’) becomes:  
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Where Γ is a complex number, the modulus of which is:  
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The equation 3.6 can be considerably simplified if we remember that its aim is the matching of the load Rb to the 

characteristic impedance of the line Z0; so, it needs to satisfy the condition:  

bRZ =0     3.7 

Substituting 3.7 in 3.6 we obtain:  
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The equation 3.8 links the magnetizing impedance Lm to the modulus of the coefficient of reflection Γ. Through 

some passages it’s possible to obtain Lm from equation 3.8:  
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Equation 3.9 is very useful because, having set a maximum value of the reflection coefficient, we can obtain, at 

the lowest frequency of use, the minimum value that the magnetizing inductance Lm needs to have to be 

inserted between the line and the antenna in figure 302. Of course, a higher value makes the transformer 

presence less invasive.  

For those who are more familiar with SWR I’d like to remind that:  
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therefore, if substituted in equation 3.9 we obtain: 
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For those who are more accustomed with reasoning in terms of return loss RL instead, I’d like to remind that the 

latter is linked to the reflection coefficient modulus as shown in the following formula:  
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It could also be helpful to refer to a table (Table 1) where the corresponding values can be found more easily 

(taken from [3]). 

 

Table 1 

|Γ| 0.024 0.032 0.048 0.050 0.056 0.100 0.178 0.200 0.316 0.330 

SWR 1.05 1.07 1.10 1.11 1.12 1.22 1.43 1.50 1.92 2.00 

RL (dB) 32.3 30.0 26.4 26.0 25.0 20.0 15.0 14.0 10.0 9.6 

 

The main effect we experience in the model in figure 302 is an increase in the SWR, even though it is not the 

only thing that happens. The reactive element Lm, which changes its impedance depending on the frequency, 

forms a high-pass filter whose cutoff frequency at -3dB depends on the other elements in the circuit too. An 

utmost simplification of the model gives us the circuit in figure 306:   

 

 

 

 

The resistance seen by the inductor Lm it is the parallel of Z0 with Rb and we are going to call it Reg; but given that 

we assumed that Z0=Rb, we will have:  
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So, the cutoff frequency of the high-pass filter will come out as: 
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Said frequency has to result at least m times (~10) lower than the lowest frequency of use fmin. Therefore, Lm 

needs to be higher than:   

min4 f

mR
L b

m
π

≥  3.15 

3.15 shows how the magnetizing inductance is in direct proportion with our m factor; as a result, when the m 

factor increases, not only does the SWR (which is a consequence of the placement of a transformer) decreases, 

but we also have a drop in the cutoff frequency of the high-pass filter fTL.  

If we wanted to set in advance the value of the SWR we could deduce what value of m satisfies both the 

relations 3.11 and 3.15. From the merging of the two we then obtain:  
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Unless we have very low SWR values, the condition is easily satisfied. As I said previously, the chosen cutoff 

frequency of the high-pass filter is usually at least 10 times lower than the minimum frequency of use (m=10). 

This implies obtaining an SWR that is around 1.22, an RL of 20dB and a |Γ| = 0.10.  

If we want to consider the magnetizing impedance Xm in parallel with the load, from 3.15 we obtain:  

bm mRLf ≥min4π  3.17 

Considering that Xm = 2πfminLm we will have:  
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If we take again m=10 we can find the usual rule which expresses that the impedance transformer has to have a 

magnetizing impedance Xm at least 5 times higher than the load one Rb.  

Parasitic effects of the components  

In addition to what we just explained, there are other side effects caused by the insertion of a matching 

transformer in the model shown in figure 302. These side effects are substantially linked to the parasitic effects 

deriving from the components used.   

Mainly: losses in conductors, losses in the ferrite and parasite capacity. The common model of a transformer is 

the one represented in figure 307.  

 

Conductors    

Losses in conductors, both primary and secondary, can be traced back to a resistance Rd connected in series to 

the primary winding (figure 307). Said resistance takes into account the skin effect of the two windings and it is 

highly dependent on the frequency, on the conductive material used, on its section and length. The resistance Rd 

influences the attenuation in the transformer bandpass, which is the available one [2]; said resistance depends 

on the work frequency, because the skin effect experienced with conductors, both primary and secondary, 

causes the increase of the resistance rate by the square root of the frequency [4].   

For non-ferromagnetic conductors that are solid cylinders (at 20°C, with diameter that is much bigger than the 

depth of penetration δ) we can estimate the conductor resistance (assumed rectilinear, not winded) with the 

help of the formulas in table 2; it can be found in [6] part 1, where lw expresses the length and dw the diameter 

of the wire (both expressed in mm) and f in MHz.  

This estimate is not accurate because it does not assume the conductor as winded, so it fails to take into account 

the interference caused by the nearby turns (known as proximity effect) that could produce a resistance even 

5.8 times higher than the value calculated with the formulas in table 2 [6].  

 

 



Table 2 

Material Resistance in ΩΩΩΩ; with f in MHz; lw and dw both in mm. 
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Hence, where the current flow is high, it is useful to minimize the losses by choosing the shortest possible 

conductors, that have a wide section and that are made with materials with a low resistivity. On the contrary, in 

signal transformers, the conductor resistance is not the main problem.  

Ferrite 

Even ferrite has losses that can be traced back to a resistance Rs connected in series to the magnetizing 

inductance Lm. Losses in ferrite can be minimized by choosing with shrewdness the type of ferrite; particularly, 

we need to have in the transformer bandpass a lower rate of electromagnetic permeability µs" (read mu) than 

the electromagnetic permeability µs' (where the subscript s stands for series).  

I’d like to remind that the parameter µs' is the one that contributes to the creation of the inductance in series Lm 

(the auto inductance of the winding) according to the following formula:  

'

0

'9
2

2
104 ss

e

e
LS L

l

AN
NAL µµπ ==⋅= −

    [H] 3.19 

AL is the inductance factor in nH/sp
2
 (the inductance produced by one turn), L0 represents the inductance of the 

winding without the ferrite, N is the number of turns, Ae is the area in cm
2 

inside the winding and le is the length 

of the magnetic circuit in cm (the last two parameters need to be taken from the datasheet).  

9
2

0 104
−=

e

e

l

AN
L π     [H] 3.20 

On the other hand, the parameter µs" is the one that generates the dissipative effect in the ferrite (heat), which 

is formed by a resistance in series Rs, whose value is determined by this formula:  

''

02 sS fLR µπ=     [Ohm] 3.21 

As shown in 3.21 that Rs is linearly dependent from the frequency of use, just like the reactance Xs, which is 

produced by the inductance Ls.  

In addition to that, the permeabilities µs' e µs" vary at the varying of the work frequency in a not linear way; 

therefore, it is necessary to refer to the values indicated on the datasheet of the chosen ferrite. Moreover, there 

can be variations from batch to batch in the aforesaid parameters, which can fluctuate from +/-20%; so, it is not 

rare to find permeability values that differ even 40% one from the other.  

 

Capacity 

Afterwards, we have to minimize the losses that are caused by the parasite capacity which generates between 

the winding turns. These generate because there is an electric potential difference between the transformer 

turns (and also between the turns and the ferrite) and also because there’s a delay in the EM wave propagation 

that flows through the primary and secondary winding. Parasite capacities render with a capacity in parallel (Cd) 



at the input connecting terminals B-B’ of the impedance transformer. Said capacity is like a low-pass filter and it 

lowers the performance of the transformer at high frequencies (figure 307).  

It is not an easy task to reduce (nor estimate) the parasite capacity Cd. One of the ways of doing that is to keep a 

low tension between adjacent turns (in other words by keeping a low voltage per turn); the problem with this 

method is that it causes an increase in the number of turns needed and with them, also the conductors’ length 

and eventually even the parasite capacity. Another method, which is a bit easier is to distance the turns one 

from the other. They can be distanced in a power transformer or, in the case of a signal transformers it would be 

ideal to use a wire with a thick insulating material around it or really thin wires (where the area exposed is less).   

For the purpose I would like to remind that the capacity between two adjacent rectilinear wires is expressed by 

the following formula:  
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Where D expresses the distance between the wires, dw the diameter of the wires (assumed to be identical) both 

in the same unit of measurement (mm) and lw the length of the conductor in meters.  

Formula 3.22 is rather complex, but it tells us that, if we assume the type of insulating material to be the same 

(εr read as epsilon-r), the capacity decreases with the increasing of the distance between the conductors D, but it 

increases with the increasing of: the diameter of the conductor dw and the length of the conductors lw. To reduce 

the capacity, if any choice is possible, 3.22 advices us to use conductors that are short, thin and spaced out. The 

use of short wires (in other words with few turns) lowers the propagation delay of the wave that flows through 

them.  

Whoever was interested in further delving into the subject, I recommend checking [6].  

It is always advisable, when possible, to wind half of the coil with the highest number of turns, then, over that 

one, winding the one with the lowest number and ultimately, on top of the previous two, winding the remaining 

half of the coil with more turns. In this way you create a sort of ‘sandwich’ that lowers the parasite capacity [2].  

Power transformers 

Lastly, when a significant amount of power flows through the transformer we need to verify: firstly, that the flux 

density B max does not exceed the admissible amount at the temperature of use; secondly, that the heat 

generated by losses in the conductor and in the ferrite does not make the temperature in the transformer rise to 

the point of reaching the Curie temperature.  

In bibliography [2] you can find a relation which links the volume of the ferrite Ve to the magnetizing inductance 

Lm, the real material permeability ( 'µµ ≈e in a toroid), the density value of the chosen flux B (usually half of 

Bmax) and the tension E to which the primary winding is dependent (leaving out the drop in the loss resistance of 

conductors Rn).  
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With the frequency f expressed in MHz, the primary magnetizing inductance Lm in microhenry and the flux 

density B in Gauss. 

Beyond the result that we obtain, formula 3.23 is very revealing, because it links the different parameters to the 

quantity of ferrite that’s needed. From this we can conclude that the volume of the ferrite increases with the 

square of the chosen tension and, given the power P is:  



bR

E
P

2

=     [W] 3.24 

it follows that the usable ferrite volume increases linearly with the power involved in the system. The presence 

of µe in the numerator can be misleading, but note that it is also present in the denominator, even though it is 

hidden in the magnetizing inductance Lm (see formula 3.19).  

For what concerns losses in conductors it’s useful to remind that they’re caused by the flowing of the current (by 

joule heating) in a layer of skin of the conductor that can be more or less thin. In other words, the conductor will 

have a variable resistance Rd=R1+R2, that is in direct proportion with the highest frequency of use (see [4], [6] 

and table 1).  

 

Taking as a model the transformer in figure 308, where the resistances R1 and R2 belong to the primary and 

secondary respectively, at a given frequency, Rb is the load frequency seen by looking into the primary, Lp is the 

parallel magnetizing inductance and Rp is the parallel loss resistance in the ferromagnetic material.  

Lp and Rp (the subscript stands for parallel) can be obtained by transforming the series impedance of the ferrite 

(figure 309) in its parallel equivalent (figure 310) [5]. I would like to mention that the series permeabilities µs' e 

µs" depending on the frequency, are the ones that can be found in the datasheet.   
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To minimize the losses, it is necessary that the ones in the conductors are equal to the ones in the ferromagnetic 

material. This happens when:  
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Failing to respect 3.25 will cause an increase in the losses in the power transformer [2].  

In the end, it is not possible to avoid losses in a transformer but we can at least minimize them. They produce 

heat, which will cause the temperature of the magnetic material to rise; this must never reach the Curie 

temperature, because if that was the case, the magnetic material would lose all its magnetic properties and it 

would become unusable.  

Example 

After all the theorical explanation, let’s try to put the above things into practice and draw from it some useful 

formulas to build a ferrite transformer.  

For example, we want to build a transformer that is capable to adapt the impedance of a coaxial TV line Z0=75 Ω 

to a purely resistive impedance R= 1200 Ω, which is typical for a receiving antenna for 160m, just like Double 

Half Delta Loop (DHDL). For the purpose we are going to use a binocular ferrite, Amidon type BN-73-202 or Fair-

Rite 2873000202 and we are going to set the Return Loss at 20dB (corresponding to an SWR of 1.22).  

From 3.16 we can draw that in order to obtain an SWR=1.22 we need to have an m value that is at least equal to:  
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We are going to take m=10 for convenience.  

Combining 3.15 with 3.19, after a few passages, we obtain:  
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Where np are the turns in the primary (the one attached to the line at 75 Ω) and AL is the inductance factor in 

nH/sp
2
 of the ferrite (it is the inductance produced by just one coil turn), which we do not know, but we can 

easily determine by measuring the minimum frequency of work with the method shown in [7]. In my case I 

found AL=5540 nH/sp
2 

at 1.8MHz; so, from 3.26 we will have:  
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For convenience we have chosen np=3 turns; the formula above satisfies the conditions in 3.26 and at the same 

time it limits the number of turns needed (therefore also the length of the conductors) in order to minimize the 

losses. We can also obtain from 3.1:  
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3.27 allows us to find the number of turns of the secondary winding ns: 
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The result is not always an integer, we can often find decimals. If that is the case the number of turns can be 

increased to reach the closest integer or half.  

In the case of a binocular ferrite it is possible to wind even the half turns because you count one on a turn only 

when the wire has gone through both the holes; if it goes through only one of them, we have a half turn. This 

way we can approximate more easily the number found to the real number of turns.  



Let’s now move on to the making of the transformer. First of all, we need to identify the conductor and its 

diameter. The most accessible conductor is the one used for electric engine windings, which is nothing more 

than enameled copper wire. The section needs to be small to avoid the capacitive effects. Keep in mind that the 

available area (the diameter of a BN-73-202 is 3.8 mm) can only fit 20 wire turns that have a diameter of 

0.50mm because the load factor of a handmade winding never exceeds 80% of the available area. Personally, for 

signal transformers, I usually use an AWG30 wire wrap wire because it is easier to peel. Its section measures 

0.50mm while its core measures around 0.25mm and it can be found in different colors.  

Now we need to find the average length of the turn. The easiest and quicker method is to wind a turn with the 

chosen wire, then we need to mark the intersection point and measure the distance between the two resulting 

marks (figure 311). In our case the average length of the turn is lwm=40 mm. Hence, from this we can calculate 

the length of the primary and secondary conductor, remembering to lengthen the pieces by adding a turn for 

the connecting wires.   

160)13(40)1( =+⋅=+⋅= PwmWP nll      [mm] 3.28 

520)112(40)1( =+⋅=+⋅= SwmWS nll     [mm] 3.29 

At this point the only thing left to do is to wind the coil. Let’s begin to wind half of the secondary (six turns) 

because it is the one with the highest number of turns. Once that is done, let’s wind all the primary one (three 

turns). Next, we need to complete the secondary winding by adding the remaining 6 turns. This way the parasite 

capacity is minimized and the band is broadened.  

When the transformer is done (figure 311) let’s remember to: to apply a sticky label on the right side of the 

ferrite that states at least the impedance of the primary and the secondary and to scrape away the enamel layer 

from the connecting wires if we used an enameled wire.  

 

 

Fig.311 

The transformer is now completed, it just needs to be checked to see if theory corresponds to reality.  

The first parameter to check is the coupling ratio. To do so we need to connect a small trimmer to the secondary 

connecting wires and an antenna analyzer to the primary (calibrated) [8] which has a typical impedance of 50 Ω. 

So, we need to set the trimmer according to:  
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The turns ratio can be verified at 50 Ω.  

The antenna analyzer will show an SWR rate around one when it is connected to a resistive load of 50 Ω. In our 

case there’s an impedance in parallel caused by the magnetizing inductance Lm, so, the SWR at the lowest 

frequency cannot be worse than 1.22. The value of the minimum frequency of work has an SWR=1.07 at 

1800kHz.  

The second parameter to determine is the magnetizing inductance Lm. To do so we’re going to measure the 

inductance of the primary with the secondary open LPO=75.5μH and then in power surge LPC=0.4μH [9]. So, from 

3.2 we obtain the coupling factor k:  
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As expected, it is around one. Consequently, the magnetizing inductance Lm obtained from 3.3 is:  

HLkL Pm µ3.750 =⋅=  

The cut frequency of the high-pass filter, from 3.14 will be:  
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The value turned out to be much lower than the lowest frequency of use fmin=1.8MHz, therefore, from 3.15, the 

value of Lm measured is over double the necessary:  
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Even though my instruments are not very accurate all the measurements have been carried out at 50 Ω and I am 

rather positive that the transformer that I built turned out to be acceptable.   

Considerations 

In this paragraph I would like to show to the reader the electric characteristics that I draw from three ferrite 

transformers that I built as indicated in the above paragraph, but using different wires. The ferrite that I chose is 

always an Amidon BN-73-202, where we have 3 turns for the primary and 12 for the secondary, therefore with 

the same volt per turn; The measurement is carried out with the primary connected to the VNWA of DG8SAQ, 

having an input impedance of 50 Ω and the secondary to a trimmer set at 800 Ω. As you can see in figure 312 the 

three transformers are made respectively with: 0.50mm enameled wire, an AWG 30 wire wrapping wire and 0.25 

enameled wire.  

 



 

Fig. 312 

 

As showed by the following graphics the return loss (RL) is the module of S11 in dB (which is equal to the S11 

taken with positive sign) and it is represented by the red line; the marker #4 is set at RL=20dB. In addition, the 

measurements are made at 50 Ω and not at 75 Ω, as stated in the project.  

1) with 0.50mm enameled wire  

 

Fig. 313 

 

 

 



2) with AWG 30 wire wrapping wire (φe=0,50 φi=0,25)  

 

Fig.314 

3) with 0.25mm enameled wire  

 

Fig.315 



It is clear that the frequency where the RL=20dB (underlined by marker #4) in the first case is around 1.67MHz, 

in the second one 27MHz and in the third 10MHz. This confirms that the best choice between the three is the 

AWG 30, even though I have nothing more that speculations on why that is.  

Lastly, I made two identical transformers with AWG 30 wire wrap wire. I connected the secondary ones together 

and the primaries one to the RX input and the other to the VNWA output TX, properly calibrated. Then I 

measured the attenuation of the two transformers in series (figure 316). 

 

Fig.316 

 

As you can see it is fixed at around -0.33dB, that means that one transformer attenuates -0.16dB, which is a 

pretty considerable result.  
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