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 1. Introduction 

Even transmission lines, such as twin-wire lines or coaxial lines, can be characterized in a 
simple and reasonably accurate way with a VNA (Vector Network Analyzer). The adjective 
"reasonably" is appropriate because the gold standard for these types of measurements is 
TDR (Time Domain Reflectometry), covered in RR n° 1 of 2012. However, we will see that 
good results can also be obtained with a VNA. 

 2. Theory 

This time, the theory is quite simple. The principle we use to measure the characteristic 
parameters of the lines under examination is that of the quarter-wave transformer. In other 
words, we exploit the fact that if we traverse a transmission line from the load to the 
generator, rotating around the center of the Smith chart in a clockwise direction, assuming 
the line has no losses, we will return to the starting point ZL after exactly half a wavelength. 
(See Figure 15-1). 
This means that the load impedance ZL placed at the end of our transmission line will 
reappear unchanged after each rotation, that is, every half wavelength (λe/2). Along the path, 
we also encounter points with real impedance ZA=RA+j0 and ZB=RB+j0 (Figure 15-1). 

 
The points are quite important for our discussion because they lie on the real axis and are 
half a rotation apart, which corresponds to a quarter-wavelength electrical distance (λe/4) or, 
if you prefer, S11, also known as the reflection coefficient Γ (gamma), is rotated by 180°. 
Without getting too lengthy, the relationship between the two impedances ZA and ZB is known 
[1] and depends on the characteristic impedance Z0 of the intervening line according to the 
following equation: 

Figure 15-1: Impedance circle along a closed line on ZL. 
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�� = ��� ⋅ �� 15.1 

Equation 15.1 is very simple because both ZA and ZB are real impedances and it coincides 
with the geometric mean of the real parts of ZA and ZB. Henceforth, we will simply refer to 
them as RA=ZA and RB=ZB to emphasize that we have chosen them on the real axis, 
meaning their imaginary parts are zero. Therefore, equation 15.1 becomes: 

�� = ��� ⋅ �� 15.2 

From an electrical perspective, the equivalent circuit is shown in Figure 15-2. 

 
In Figure 15-2, the real impedance RB is transformed into the real impedance RA after 
traversing a segment of the transmission line that is a quarter-wavelength long with 
characteristic impedance Z0. This is why it is called a quarter-wave transformer. 
It goes without saying that if we know RA and RB, we can use equation 15.2 to calculate the 

Z0 of the line λe/4 that connects them. 
However, quarter-wavelength electrical (λqe) is only applicable at a specific frequency. In an 
ideal line, the wave propagates at the speed of light c=300.106 m/sec. Therefore, from the 
motion equation, we can derive the wavelength and then the frequency: 
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 15.3 

The result will be in meters if the quarter-wavelength frequency fq is in MHz. 
In practice, the wave in a real line does not travel at the speed of light but at a slower pace. 
Hence, equation 15.3 introduces the velocity factor VF, which accounts for the reduction in 
velocity. Thus, equation 15.3 becomes: 
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The velocity factor VF is always less than one and is another characteristic parameter of 
transmission lines. 
The last parameter necessary for complete knowledge of the line is its attenuation. To 
measure the attenuation, we will use a clever method described in [2]. Although it is not as 
accurate as the method we have already seen in section 12 [3] when we discussed 
measurements through two-port systems, it allows us to measure the attenuation of our 
segment in a simple and fast way. 
The method utilizes the definition of the reflection coefficient Γ, which expresses how much 
the reflected wave from the load, placed at the end of the line, has been reduced compared 
to the wave sent by the VNA on the measurement plane. The cleverness lies in placing a 
non-dissipative load, such as an open or a short, at the end of the line. By doing so, the 
energy of the wave will be entirely reflected back towards the VNA (|Γ|² = 1). If, on the 
measurement plane of the VNA, we observe that the reflected wave has reduced, then the 
cause of the attenuation is certainly due to dissipation along the line during the round-trip, 
because we have chosen a non-dissipative load. 
In theory, this is correct, but in practice, the non-dissipative load should be understood as 
minimally dissipative, both for an open and a short. Additionally, the line, in addition to the 
dissipative component, also has small non-dissipative fractions that cause disturbances.  

Figure 15-2: Impedance transformation after λ/4. 
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To increase the accuracy of the actual measurement, we perform measurements with both 
an open line and a short line, and then calculate the geometric mean of the two values of |Γ| 
obtained [2]. Using a short and then an open ensures a 180° phase rotation on the reflected 
wave, allowing the geometric mean to reduce errors.  
The magnitude of the reflection coefficient |Γ|, which is the radius of the circle in Figure 15-
1, can also be expressed in terms of return loss RL, which is more convenient. In decibels, 
the reciprocal is indicated by a minus sign in front, so: 
�� = 20��� 1 |�|⁄ = −20���|�|dB 15.5 
Since the waves are measured at the start, the return wave undergoes attenuation twice 
due to the round trip along the line LC. In decibels, the product of two cascaded attenuations 
is expressed as the sum of the attenuations. Since the attenuation LC of the line remains the 
same, we have: 

� =
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#

dB 15.6 

The geometric mean of the RL values obtained with an open load RLO and a short load RLS 
is expressed as the square root of the product of the two values. In decibels, it becomes the 
arithmetic mean of the attenuations LC. The practical formula is as follows: 

� =
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Obviously, the line attenuation changes depending on the frequency [3, section 12], so we 
need to measure the RL at the frequency of interest. 

 3. From theory to practice 

First, let's see how we can use the knowledge gained to determine the unknown 
characteristic impedance Z0 of our line and its velocity factor VF with the help of the VNA. 
As we already know [3], the VNA is capable of measuring the S11 parameter (also known as 
the reflection coefficient Γ) on port 1. From the reflection coefficient Γ, we can derive the 
impedance presented on the measurement plane of port 1 at various frequencies within the 
instrument's span. 
During the sweep, there will also be a frequency that corresponds to a quarter-wavelength, 
highlighting the quarter-wave transformation and allowing us to use the previous formulas. 
Therefore, it is important that the span includes the frequency that corresponds to the 
quarter-wavelength, without going too far to avoid making too many rotations around the 
center of the Smith chart. 
To find the maximum frequency fMAX where we should stop the span, we need to measure 
the physical length lf (in meters) of our unknown line and then utilize equation 15.3 as follows: 

()�* =
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 MHz 15.8 

The frequency obtained from equation 15.8 will be the end frequency of the span, while the 
start frequency will be the minimum of the instrument. 
Once the minimum and maximum frequencies are set, we need to calibrate port 1 of the 
VNA using the SOL kit on the actual measurement plane. After that, we will have the 
instrument ready to measure anything presented on the conventional reference plane, but 
we will need to move it to coincide with the point where we connect the start of our unknown 
line. To shift the conventional reference plane to the measurement plane, we need to add 
twice the delay of the connector we use to connect the line in the appropriate menu. For 
example, in the NanoVNA SAA-2N, it can be found under Display → Scale → EL.Delay. 
Next, we need to take a resistance, which is anti-inductive within the span frequencies, with 
a known value that is preferably higher than the hypothetical value of Z0 for the line under 
examination, and also different from the 50 Ohms of the instrument (e.g., 100 Ohms). This 
resistance needs to be accurately measured as it will serve as our RB. 
Next, we need to take a resistance, which is anti-inductive within the span frequencies, with 
a known value that is preferably higher than the hypothetical value of Z0 for the line under 
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examination, and also different from the 50 Ohms of the instrument (e.g., 100 Ohms). This 
resistance needs to be accurately measured as it will serve as our RB. 

 
Let's set up the VNA to display at least the Smith chart and impedance. Start the scan, and 
if all goes well, we will obtain the diagram shown in Figure 15-4. 

 
I would like to point out that in Figure 15-4, the circle does not close because we limited the 
maximum scanning frequency to fMAX, and the trace will not start exactly at point RB but 
slightly after it because the starting frequency of the scan will not be zero. 
Now, let's search for point A, indicated by the arrow in Figure 15-4, as it represents the 
resistance RA. In searching for point RA, we need to minimize the imaginary part XA, although 
we won't be able to completely eliminate it unless we focus a large number of scan points 
within the set span. One trick is to reduce the span around point A, but this will require 
another calibration and scan. 
Since we do not need absolute precision, we will settle for finding the value that minimizes 
the imaginary part as much as possible. This is because the resistor will not be ideal, the 
connections will not be perfect between the line, the connector, and the resistor, the 
measurement plane will not perfectly coincide with the calibration plane, and the point RA 
will be slightly shifted towards the center due to the attenuation of the non-ideal line. All of 
these factors contribute to less accurate measurements, so there is no need to strive for 
perfection with the marker. Approximating values within fractions of pF or pH will suffice. 

Figure 15-3: Measurement circuit with VNA. 

Figure 15-4: Diagram after the scan with VNA. 
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Once we have centered point A with the marker, we read the value of the real part RA and 
its frequency, which we will denote as fA and express in MHz. Using equation 15.2 and the 
values of RA and RB, we can obtain the characteristic impedance Z0 of the line. 
Furthermore, from the frequency fA of point A, which I remind you is where the quarter-
wavelength transformation occurs, we can obtain the electrical length le of our line segment 
using a suitably rearranged version of equation 15.3: 

�� =
��
�-

 m 15.9 

In equation 15.9, the frequency is expressed in MHz, and the length is in meters. 
Now, if we explicitly express VF from equation 15.4 and write it in terms of lengths, we have: 

./ =
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Thus, with a single measurement, we can obtain two important characteristic parameters of 
our unknown line. 
The third important parameter is derived from equation 15.7 by measuring the magnitude of 
the reflection coefficient in dB with the line left open and short-circuited at the operating 
frequency, taken as positive (this is nothing but the return loss). The accuracy of the result 
is higher with more decimal places and if the line is not significantly shorter compared to the 
wavelength. 

 4. Practical example 

Now, let's move on to the practical example. With the help of a power drill and the tools 
shown in Figure 15-5. 

 
I created a twin-wire line by twisting two 0.5mm enameled copper wires, making 
approximately 3 twists per centimeter. The line turned out to be 0.372m long, and I 
connected one end to an SMA-f connector and the other end to a regular 100 Ohm resistor; 
as shown in Figure 15-6. 

 
After that, I calculated the maximum frequency to set on the VNA using equation 15.8: 

()�* =
��
+,
= ��

�,��#
= 201,6345 15.11 

Figure 15-5: Tools for wire twisting. 

 

Figure 15-6: Line header and length measurement. 
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I set the stop frequency on the VNA to 250MHz, rounding up, and performed the calibration 
using the Rosemberger female SOL kit, as shown in Figure 15-7. I also added the delay of 
the SMA-f connector, which is 84 ps. 

 
After that, I calculated the maximum frequency to set on the VNA using equation 15.8: 

 
Next, I inserted the line and started the scan. The result is visible in Figure 15-8. The scan 
range is a bit too wide, but in Figure 15-8, we can clearly see the position of the marker 
(highlighted area A in yellow) and the frequency and impedance values in the circled area in 
red. Notice the inductance of only 23pH. 

 

Figure 15-7: Calibration with Rosemberger SOL kit. 

 

Figure 15-8: Scan result with NanoVNA SAA-2N. 
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The values of interest are RA=16.2 Ohms and the frequency fA=125.005MHz. We measured 
the resistance at the end of the line precisely using a four-wire measurement and obtained 
RB=99.26 Ohms, as shown in Figure 15-9. 

 
Now, let's perform the calculations. Using equation 15.2, we calculate the characteristic 
impedance: 

�� = ��� ⋅ �� = √16,2 ⋅ 99,26 = 40,01Ω 15.12 

Using equation 15.9, we calculate the electrical length: 

�� =
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8#�,���
= 0,599m 15.13 

Finally, using equation 15.10, we calculate the velocity factor: 

./ =
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= 0,62 15.14 

If we want to refine the measurements, we can narrow the span of the NanoVNA to +/-10 
MHz around the quarter-wavelength frequency to concentrate the measurement points 
within the span and increase the measurement resolution. In my case, I will use my DG8SAQ 
VNWA and concentrate 4000 measurement points in the range from 100 to 150 MHz. The 
result can be seen in Figure 15-10, and it is very similar to the one obtained with the 
NanoVNA. The measured values with VNWA (marker 3) are RA=16.02 Ohms and fA=125.4 
MHz, resulting in: 

�� = ��� ⋅ �� = √16,02 ⋅ 99,26 = 39,87Ω 15.15 
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= 0,599m 15.16 

./ =
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= 0,62 15.17 

The values are well within the +/-1% tolerance. 

 

Figure 15-9: Measurement of resistance RB 

using 4-wire measurement. 
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Let's proceed to measure the attenuation using equation 15.7. To do this, we need to 
measure the magnitude of the reflection coefficient at the operating frequency, which in our 
case is 100MHz, with an open terminal and a shorted terminal. 
First, we remove the 100 Ohm resistor and perform the open scan, as shown in Figure 15-
11. In Figure 15-11, 

 
the value of the reflection coefficient with an open termination is circled in red, and when its 
sign is changed, it becomes the open return loss RLO=0.51dB. 

 
Figure 15-10: Measurement obtained with DG8SAQ's VNWA. 

Figure 15-11: Reflection coefficient with open line @100MHz 
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Similarly, we perform the scan with a shorted terminal, as shown in Figure 15-12. In Figure 
15-12, 

 
the value of the reflection coefficient with a shorted termination is circled in red, and when 
its sign is changed, it becomes the short return loss RLS=1.25dB. 
Using equation 15.7, we obtain the attenuation of our line segment at 100MHz: 

� =
!"%&!"'
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= 0,40dB 15.18 

Since the segment length is lf=0.372m, our line has an attenuation per meter of: 

>� =
"?
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�,��#
= 1,09dB/m @100MHz 15.19 

This is not negligible. 

 5. Conclusions 

In conclusion, the methods described are not the only ones available, nor are they the most 
accurate. However, they are practical and allow us to obtain the most important parameters 
that characterize our lines, even with short line segments. These methods have the limitation 
of providing valid parameters around the measurement frequency, and the values obtained 
may vary at different frequencies (especially for self-constructed lines). Furthermore, the 
accuracy of the measurements depends on the quality of the connections, which, in this 
example, are quite rough, and the limitations imposed by the instrument in terms of precision. 
It should be noted that the reflectometer, found in low-cost VNAs, accurately measures 
impedances four times lower and four times higher than the characteristic value of the 
reflectometer; i.e., between 12.5 and 200 Ohms. 
Overall, I believe that the proposed methods strike a good balance between accuracy and 
practicality. 
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