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Generalities  
This is a short article to talk about the function of the device commonly called “choke” or 
“balun”, but more accurately called “common mode choke”. The article begins with a 
theoretical introduction followed by a practical example, provided with proofs of 
effectiveness.  
 
Throughout the article I will take for granted that the currents and the tensions are 
sinusoidal and you can use phasors to represent them. Also, I’m aware that I have used 
models with discrete components even though sometimes the physical lengths of the 
devices are comparable to the wave lengths used.  
 
Common and differential mode currents  
In order to tackle the topic pointed out in the title of this paragraph, let’s consider a 
segment of a bifilar line placed in the free space, far from any influence from the ground 
and whose we don’t know neither the provenience nor where it ends; therefore, a 
completely abstract and imaginary situation [1].  

 
 
If we were to measure the currents that flow through the two conductors in picture 201, 
without interfering, we could think that currents l1 and l2 are composed by a common mode 
current lC (CMC) and by a differential mode current lD (DMC), linked by the following 
relations:  
 

DC I+I=I
1  2.1a 

DC II=I −
2  2.1b 

 
where we imagine that the common mode currents lC flow through the two conductors in 
the same direction, while the differential mode currents lD flow through them in the 
opposite way. For both currents let’s hypothesize that the modulus of lD are equivalent, as 
well as the ones of the lc. This makes the differential currents more intuitive because they 
can be thought as currents that come from one conductor and go towards the other one, 
while it’s different for the common mode currents they would necessarily need to come 
back from another way.  
 
The fact remains that, if the wires of the line are close to each other (in relation with the 
wave length), the differential currents lD generate EM fields. These fields cancel one 



another in the space surrounding the line, while for the common mode currents lC the fields 
add up, so they irradiate. I will not dive into this topic any further not to digress too much. 
The equations in 2.1 can be rewritten as follows: 
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Let’s observe that if the currents l1 and l2 were equal in their modulus and opposite in 
direction, l1 would be equal to -l2 and from the equations 2.2 we would come up with:  
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The other extreme case is the one where the common mode current lC is present but the 
differential mode current lD is zero.  
 

The ideal common mode choke 

The common mode choke, which can be called just choke, is a device that’s used to 
reduce the common mode currents lC without altering the differential mode currents lD that 
flow through the line.  
 

 
The choke is often built just by putting in a ferrite ring in the line, in a way that it coils both 
the two conductors (fig. 202a), but it can be obtained as well by coiling the line in air (we 
will get lower inductances). So, as a first approximation, the choke can be displayed with a 
couple of inductances L1 and L2 mutually paired one to the other M, figure 202b.  
As we said previously, if the differential currents lD that constitute the currents l1 and l2 are 
equal in modulus and opposite in direction (fig. 201), they will generate two equal and 
opposite fluxes in the ferrite, which cancel one another. Therefore, on the wires of the line 
in figure 202b the following impedances will manifest:  
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Now, if we substitute l1 and l2 with the equations in 2.1 we obtain:  
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Then, if we suppose: that L1=L2=L, that the pairing between the windings is perfect (k=1) 
meaning that M=L and the common mode current lC=0, the equations 2.5 will become:  
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Basically, the impedance seen by the differential currents is zero. In fact, the fluxes 
generated by the differential currents in the ferrite are equal and opposite so they cancel 
each other out; so, the impedance generated by the impedance will be zero. If we suppose 
again that: L1=L2=L, that the pairing between the winding is perfect (k=1), meaning that 
M=L, but that this time the differential mode current lD=0, the equations now 2.5 become:  
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In reality, the impedance seen by the current is not zero at all, in fact it is enhanced by the 
pairing of the windings. If we had used two identical ferrites, but physically separated, one 
on each conductor, the mutual pairing would have been null M=0, therefore the factor 2 
from 2.7 would have disappeared.  
So, as a first approximation, it seems that the choke responds to the expectations: it 
hinders the common mode currents that flow through the line without influencing the 
differential mode ones.  
 

The common mode currents in the ferrite choke  

Now we will deal with the real ferrite choke. From the practical use of ferrite and from the 

permeability graphics, it’s evident that the inductive component (µ') dominates. Yet, at the 

increasing of the frequency the dissipative component (µ") gets more and more prominent; 
this parameter includes the parasite currents in the ferromagnetic material and the losses 
by hysteresis. This persists until the reaching of a certain frequency limit, which differs 
from material to material. If we get past that limit, the ferrite loses all of its ferromagnetic 
characteristics [2]. The graphic in figure 203 (taken from [3]) shows the permeabilities in 
function of the frequency of the grade 43 ferrite NiZn (the one that is more suitable in HF 
amateur bands).  
 



 
Fig. 203 

The dissipative component is usually modeled with a resistance Rs in series to the auto 
inductance Ls, however, as it is shown in figure 203, both the value of the auto inductance 
Ls and the one of Rs are strongly dependent on the frequency and on the ferrite mix 
(besides the temperature of work). 
Thus, the choke can be represented by the circuit in figure 204 [4] (that is also the one 
chosen by the LCR meters):  

 
Where sss jX+R=Z  2.8 

The parameters in 2.8 are linked to the ferromagnetic material following the following rule:  
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The parameters µs' and µs'' are respectively the real and imaginary components of the 
complex permeability, typical of the ferromagnetic material chosen [5]. L0 is instead the 
auto inductance that would be present if there wasn’t any ferromagnetic material, L0 
depends only on the structure and the square of the number of coils. The auto inductance 
L of an inductor can also be calculated from the inductance factor AL multiplied by the 
square of the number of coils. 
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Where AL is in nH/sp2, the actual area of the ferrite Ae in cm2 and the actual length of the 
magnetic circuit le in cm; both these two latter parameters are already given by the builder 
because they are not easy to calculate.  
On the contrary, the inductance factor AL can be easily found because it corresponds to 
the auto inductance of just one coil turn expressed in nH. Furthermore, when the choke is 
built with multiple coils winded up, parasite capacities CP can appear (due to the winded 
conductor). Their reactance tends to cancel out the effect of the inductance, as the 
frequency increases. The following model with lumped parameters describes quite 
accurately a real choke in the range of use of the ferrite.  
 

 
 
If we hypothesized that the circuit in fig. 205 was symmetric, we could simplify it by 
substituting the subscript 1 with a 2, so it would end up being: IC1=IC2; IK1=IK2=IK; IP1=IP2=IP; 
CP1=CP2=CP; L1=L2=L; R1=R2=R. Assuming this, the impedance seen by the common 
mode currents will be equal in both the two ramifications and it will be:  
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Where IP is equal to: 
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Which substituted in 2.12 and simplified, putting M=L, generates: 
 

PPKKKPK

KKK
CC

RCjLC

RLj

RIMIjLIjCjI

RIMIjLIj
ZZ

ωω

ω

ωωω

ωω

+−

+
=

+++

++
==

21

2

)( 221  2.14 

 



The equation 2.14 is rather complex, but if we ignore the first-grade term at the 

denominator jωRCP=0 and we transform it in the Bode form, it will be easier to represent it 
by concentrating on the key points.  
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With the increase of the frequency, as shown in figure 206, the impedance appears flat 
starting from the value 20Log(R) up until reaching point A, where it starts to increase by 
20dB/decade; then, it continues to increase until point B, where it starts decreasing by the 
same value as before, 20dB/decade. It’s fairly intuitive that in correspondence to point B 
there’s a parallel resonance (the dampening of which has been disregarded) and that the 
points A and B correspond respectively to zero and to two poles (I’m only reporting the one 
in the positive frequency range) which fall under the following f values:  
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The two points are not easy to calculate because both R and L depend on the frequency 
(see 2.9) and the parasite capacity CP is often inscrutable; there are some semi-empirical  
formulas which try to estimate the auto capacity of a winding, just like the Medhurst 
formula, but they only take into consideration peculiar solenoids (long, cylindric and in air). 
In our case, we can use the formula that you can find in [6], which examines the case of 
windings on a soft ferrite, through the solution of the Maxwell equations with finite 



elements. In practice, CP can be found by measuring the resonance frequency of an 
inductor, modeled in the same way as figure 207, with a known capacity in parallel.  

 
The measure is carried out with a first known capacity C1 and it’s repeated with another 
known capacity C2. The two resonance frequencies found with the two capacities f1 and f2 
(in MHz) can be combined in the following formula:  
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We’re going to see later that the curve in figure 206 represents fairly well the range of 
measurements we are dealing with. As for now, what is our interest is to draw some ideas 
for the construction. For the matter we observe that point A depends from the relation 
between the R and L of the ferrite, while point B moves towards higher frequencies the 
more the denominator gets smaller.  
At low frequencies the value of R gets closer to the resistance DC, because the reactance 
caused by CP is negligible, therefore the impedance becomes the one described in 2.7. So:  
 

LjZZ CC ω221 ==  2.19 

 
In the region between point A and B, the impedance depends from the X and R factors. I 
would like to remind, however, that R is not exactly a resistor with a well-defined 
resistance, it is rather the representation of the losses in the ferrite (the ones that heat it 
up). R represents also the resistances of the conductors (skin effect). So, virtually R is not 
a resistance, but it behaves like one; for this specific reason it does not have a constant 

value but it changes at the varying of: the frequency, the permeability µ" (which also varies 
at the varying of frequency), the temperature, the structure and the type of ferrite.  
A typical example of choke for the common mode currents is shown in figure 208, which is 
taken from [7]. As you can see (blue trace) reality is different, but it is pretty faithful to the 
model we considered earlier and even to the simplifications we introduced. In figure 208, 
point A is visible at around 30MHz (in the previous cases it was at around 10MHz instead). 
Instead, point B is quite visible at around 900MHz; the presence of a cusp, more or less 
evident, depends on the dumping factor, the one we ignored by eliminating the first-grade 
term in 2.14.  



 
Fig.208 

 

Differential mode currents in ferrite choke 

The differential mode currents lD in the real ferrite choke are not hindered by any 
significative obstacle because they generate a very small flux inside the ferrite (virtually 
zero – formula 2.6). This flux is caused by the dispersed fluxes, that cause the coupling to 
be imperfect, even though they’re small, so, in reality k≠1. I’d like to open a parenthesis: 
the coupling factor k and the auto inductance Lpo can be easily measured with a RFbridge 
or with and antenna analyzer. The auto inductance Lpo is the inductance of the first coil L1 
with the other one opened, while the value Lpc can be calculated only from the first coil, but 
with the second one L2 is short circuit. Knowing the values of Lpo and Lpc measured at work 
frequency, with 2.20 we can obtain the coupling factor k:  
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The value of the mutual inductance M is then drawn from formula 2.21:  
 

LLk=LLk=M ≈⋅⋅ 21  2.21 

 
With the coupling being imperfect, part of the flux gets dispersed in the surrounding air 
without interlinking with the conductor coil turns. The said dispersed flux, being in air, will 
not produce any dissipative effect in the ferrite and it will have a constant permeability 



close to the one in vacuum (µ0=4π10-7 H/m). However, the imperfect pairing produces M ≠ 
L, so 2.6 becomes: 
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The difference between Ls and M is very small (k is often over 0.99) so the effects on the 
differential currents can be seen only at very high frequencies, way over point B of figure 
206. At those frequencies even the effects due to the parasite capacities and the 
resistance of the conductors (due to skin effect) can manifest (the losses in the dielectric in 
HF are still negligible). Hence, I suggest again a model similar to the one in figure 205.  
Therefore, the impedance seen by the differential current will have, in the range of interest, 
the resistance in series, generated by the skin effect Rw, which in the case of copper 
conductors is:  
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Thus, the parasite capacity associated to the inductance loss will generate a resonance in 
parallel at way higher frequencies compared to point B, which we encountered talking 
about the common mode currents and which is usually not in the range of use of the choke 
(see the green trace in figure 208).  
 
 
Common mode currents in a circuit 
Now let’s take into consideration what happens to the common mode currents (CMC) 
when we insert a ferrite choke in a transmission line, which links a generator to its load.  

 
The test circuit proposed is the one in figure 209. Given that the resistances 
R1=R2=R3=R4=50Ω are in series on two different paths and the two are in parallel one with 
the other, the generator will make the current Ig flow and it will generate a resultant of 
R=50Ω. Furthermore, given that the two paths are also considered as symmetrical, the 
currents IC1=IC2=Ig/2 can be considered common mode currents because they are 
equivalent both on the inner conductor and the braided outer conductor. Lastly, an 
equivalent electric circuit will come out like the one in figure 210.  
 
 



 
The circuit in figure 210 is very useful to measure the common mode currents IC1 and IC2 
(they can be calculated from the voltage drop of the respective R) and the drops in voltage 
in the line segment V1 and V2. Then, if we use a “clip” type ferrite, we can see the influence 
that it has on the common mode currents with or without the ferrite plugged in.  
Let’s hypothesize that the inductances produced by the ferrite are equal L1=L2=L (in the 
case of a coaxial line this is not exactly true, but it is acceptable) and that the coupling 
between the two is perfect (so that M=L); this is reasonably true for the coaxial lines and 
less true for the bifilar lines. This way we will obtain:  
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The tension at the ends of the two inductances is equal, V1=V2=V, because they are in 
parallel with each other. Therefore, the voltage drop at the ends of the inductances will be: 
 

gC LIjLIjV ωω == 2  2.25 

 

Let’s carefully observe 2.25: it basically tells us that the flux ΦT generated in the ferrite by 
the common mode currents IC1 and IC2 is equal to the flux that the current Ig would 
generate if it flowed by itself through a single conductor.  
You might say it is obvious, because Ig=IC1+IC2 but the repercussions of this are not so 
obvious.  

The losses in the ferrite (RS) are caused by the flux ΦT generated in the ferrite by the 
current Ig (in the term RS are included the losses in the conductors, which are considered 
negligible); in addition, the transmission line can be substituted with a conductor which is 
run through by the total current Ig. This latter simplification, which can be obtained by 
soldering the two conductors of the line one with the other, allows us to simplify the study 
of our choke if we ignore the losses caused by the skin effect in the conductors (which in 
the case of a coaxial line are slightly different between one another).The parasite capacity 
CP, which limits the bandwidth of the choke, is equally present and, if we use the coaxial in 
short circuit at the ends, it practically remains the same.  
In other words, we can use our model with concentrated parameters of figure 211 to study 
our choke, because it approximates quite well the reality of the HF bands.  



 
 
In the circuit in figure 211 the auto inductance LS=L and the losses in the ferrite RS are 
shown (the subscript S stands for series model); both parameters are strongly dependent 
on the frequency (see figure 204 and equations 2.9). The losses caused by the skin effect 
in the conductors of the coil are plugged into the RS (in our case the losses in the ferrite 
are way higher than the ones in the conductors). Ultimately, the parasite capacity CP is 
considered independent from the frequency, as we have seen in figure 205 (this is quite 
true, as long as the frequency stays under the auto resonance frequency).  
It is a good thing to calculate the scatter parameter S21 from the model in figure 211 [8] 
because it is what an electrical analyzer measures and it is tightly related to the insertion 
loss IL. So: 
 

2120 SLogIL −=   dB 2.26 

 
As we can see from 2.26 the insertion loss IL in dB represents |S21| in dB in a specular 
way as regards to the frequency axis (S21 is, actually, the reciprocate of IL and that is 
rendered with the minus sign before the logarithm).  
To calculate the IL it is useful to repeat the definition of insertion loss and express it in 
current.  
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Where P’ in the power dispersed on a hypothetical load R without a choke, while P is the 
one we would have on the load with the choke plugged in. 
The circuit model in figure 211 it is the same type as the ones shown in figure 212; see [1]. 
 

 
Therefore, the insertion loss caused by the impedance Z turns out as follows: 
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The impedance Z is already known from 2.14. If we put Ls=2L and Rs=R (I would like to 
remind that Rs represents the losses in the ferrite, Ls the inductance of the coil with the 
ferrite and CP is the sum of the parasite capacities; see 2.9); so we obtain:  
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Basically, we find again the curve traced in figure 206, divided by the Rg+RL and summed 
to the unit. The main points A and B are still the same as the ones in 2.16 and 2.17:  
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I’m writing again the equation of the module for completeness:  
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From 2.31 we can easily find that in DC we have RS=LS=CP=0, so:  
 

( ) 01200 == LogIL  2.32 

 
At high frequencies, where the reactance CP prevails, we have a low RS and LS (because 

µ' and µ" drop) and they are bypassed by the parasite capacity. So, we obtain:  
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At lower frequencies LS prevails, while CP and RS are not yet visible, we have:  
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Far from the extreme values, the curve is similar to the one already seen in figure 206. 
Ultimately, it is possible to obtain the equation of the impedance Z seen between the two 
broken lines in figure 212:  
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Differential mode currents in a circuit  

Now let’s examine what happens to the differential mode currents (DMC) when we insert a 
ferrite choke in a transmission line which links a generator to its load.  

 
From figure 213 we can observe that the RF generator, unbalanced towards the ground 
because of the current Id, which enters into one of the two conductors of the line (in this 
case in the coaxial inner conductor), it flows through the first half of the load up until the 
node N and, if Ic=0, it comes back from the braiding of the coaxial, continuing towards the 
mass of the generator Vg. In this case the current Id is entirely a differential mode current; 
its module does not change throughout its path. All of this will happen if the current Ic is 
zero and/or if the segment that links the node N to the ground is absent; this way we can 
make a floating load as shown in figure 214.  

 
 
As we have already seen in the beginning paragraph (equation 2.22), in the case that the 
current was equal to zero and the pairing between the two coils was almost perfect (k≈1), 
the inductances L1 and L2 seen from the DMC would be very small, because they are 
generated from the dispersed fluxes and, in series to the differential mode current 
ID1=ID2=ID. As a result, if we suppose: LS=L1=L2, RL=R1+R2, we will have: 
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Therefore, the impedance seen by the differential mode current ID, when IC=0, is very 
small and comparable to the loss in the conductors (expressed in 2.23); but these are 
minor too, so, in the configuration in figure 214, the generator basically only sees the load 
RL. On the contrary, at very high frequencies the dispersion inductances of 2.36 start to 
increase and get heavy, as shown in figure 208.  
 
In the case in which the common mode current IC, in figure 213, was not zero, the situation 
would be like the one in figure 215. 
 

 
 
In this latter case the current IC will be: 
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From which we can draw what follows:  
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Given it is symmetrical, the circuit in figure 215 can be modelled in the following way:  
 

 
 
Referring to figure 215, in the pathway between the node N and the ground, only the 
common mode current Ic will flow (presumed to be of conduction) and it will be hindered 



solely by the impedance generated by Ls, Rs  e Cp (figure 216). Hypothesizing that the 
currents I1 and I2 in figure 216 are:  
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Then, applying the superposition of effects, it is evident that:  
 

- w
hen Ic=0 the currents I1 = I2 = Id and the current Id flows only through the impedance 
Zd:  
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The “approximately” is mandatory because the pairing factor is k ≈ 1, so that it 
cancels out the imaginary term in 2.40.  
 

- when Id=0, only the current Ic will flow, the latter being limited by the impedance Zc 
(Zc is again the one from 2.35). 
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Considering 2.40, the circuit in figure 216 transforms into the circuit that follows:  
 

 
 
From the circuit in figure 217 it is even more noticeable that the system Ls, Rs and Cp 
(whose impedance Zc is drawn from 2.35) is in parallel to the resistance R2. This is not 
particularly ideal because when the impedance is not high enough, the differential mode 
current does not come back entirely through R2; this also happens when the load R1 + R2 
is adapted to the line. Therefore, if the generator Vg, with its internal resistance Rg, saw a 
perfectly paired load (hence Rg = Z0 = R1 + R2 with R1 = R2), it would immediately 



mismatch when the central point N is grounded; all of this is due to the fact that the 
resistance R2 is connected in parallel with Zc. This mismatch will make itself more and 
more felt the more the module of Zc decreases, until Zc will cause a short circuit in R2 

letting all the current I1 flow through R1 and come back to the grounding as a common 
mode current Ic. Clearly, I1 = Ic is exactly the situation we want to avoid, so it is necessary 
that the value of the module of Zc is as great as possible, this way it will have the littlest 
influence in parallel with R2. This condition, in practice, is already satisfied with Zc values 
that are at least ten times greater than R2: 
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The  magnitude plot for the impedance of the system is marked out in figure 206. It 
appears evident that there are two values of frequency which mark the boundary inside of 
which 2.42 is satisfied. I will conclude here, to prevent an already loaded paragraph from 
becoming too dense of information. If someone was interested in knowing more you could 
always reach out to me for clarifications or additional information.  
 

Considerations on power 

When a ferrite choke is working it creates a flux Φ which hinders the flowing of the 
common mode current; the consequence is a voltage drop at the ends of the conductors 
that go through the choke. The manageable power of a given choke basically depends on 
three elements: the losses in the conductors, the losses in the ferrite and the absolute 
maximum flux. The losses in the conductors of the line at high frequencies make them 
heat up due to Joule effect. Joule’s law states that the heat produced is Q=R.IC

2t (where R 
is the resistance, IC the CMC current and t time), where the R of the conductor at high 
frequencies increases by the increasing of the square root of the frequency of work (see 
2.23). Instead, the losses in the ferrite are mainly caused by the parasite currents and by 
the losses by hysteresis. Said losses produce heat and they are represented in our models 
by the resistor RS. The parasite currents are directly proportional to the frequency of use 
(and also to the permeability and are influenced by other factors depending on the material 
chosen), while the losses by hysteresis, for the same frequency, are directly proportional 
to the amplitude of the common mode currents that supply the flux.  
On the other hand, the maximum flux in a ferrite has to be limited because if it exceeds the 
saturation point, the relative permeability of the ferrite drops and reaches values close to 
the ones of air ≈1 and this causes non linearity which generates distortions and harmonics.  
Unfortunately, it is very hard to estimate the common mode current that gets halted and 
because of that neither the CMCs, nor the voltage drop that will manifest at the ends of the 
choke will be known beforehand; the differential mode current (DMC) that the line has to 
carry will be known, instead, but it only serves to size the conductors.  
Nonetheless we can still make some considerations: the highest dispersion of power 
happens at higher frequencies, therefore we will have to carry out the power stress tests at 
the highest frequencies of use; the more heat is produced, the more there will be the need 
to have it dispersed in the environment, so in order to prevent the reaching of the Curie 
point, it is necessary to maintain the losses in the ferrite as low as possible. In addition, we 
need to make sure that the potential heat that is produced can be easily dispersed in the 
environment.  
 



Building a choke 

After all of this theory we need to put something into practice, otherwise we are going to 
lose the practical sense of things.  
I will now show you, step by step, how to build a choke in a coaxial cable insertable in a 
transmission line (always coaxial) which supplies a balanced load. We are also going to 
make sure that it reduces the common mode currents of at least -20db in the band 1,83 ÷ 
28 MHz. 
As far as we know, the most critical working point for the choke is when it works at low 
frequencies, while the passband is limited to the high frequencies by the parasite 
capacities CP; we will try to minimize the latter by reducing as much as we can the number 
of spires and by distributing them all over the ferrite. Since we want a reduction of -20dB, 
we deduce from 2.26 that the insertion loss caused by the choke will have to be IL=20dB. 
So, rewriting 2.28, we obtain: 
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Usually the spectrum analyzer has RS=RL=50Ω; so, if we set IL=20dB in 2.43 we obtain: 
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Let’s hypothesize that we want to use a ferrite FT240-43. From figure 203 we can gather 

that the dominant permeability at the lowest frequency fL is µs'≈620. So, we can think of the 
desired |Z| as solely consisting of the inductive component, knowing that this is considered 
a worse simplification of reality. In a real situation we will also have, in fact, the resistive 
component RS which comes to the aid of our choke. Therefore, at the frequency of work 
fL=1,83MHz we can consider:  

SXZ =  2.45 

where: 
 

LSS AfNLX 2
2πω ==   Ω 2.46 

AL can be obtained from 2.11 and from the magnetic features of the ferrite FT240-43 
 

AL 1075 ±20% nH/sp
2

Ae 1.58 cm
2

le 14.5 cm

Ve 22.8 cm
3

Bmax 2900 G

TC >130 °C

Ferrite FT240-43

 
Tab.1 
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Notice that the tolerance indicated in the building characteristics is +/-20%; for this 
particular reason I prefer to measure the actual AL of the ferrite that I intend to use. From 
the graphic that I got measuring the S11 of one spire winded on the ferrite that I chose for 
my test (with VNWA by DG8SAQ [9]) I obtained the auto inductance of a spire, which 
corresponds to the AL (colored in blue in the graphic).  
 
 



 
Fig.218 

 
For convenience I included all the values in table 2.  
 

FREQUENZA AL (nH/sp
2
) Rs (Ω) Xs (Ω) Zs (Ω)

1,830 974 3,5 11,2 11,7

3,650 687 9,6 15,8 18,5

7,100 471 17,0 21,1 27,1

10,450 370 23,2 24,3 33,7

14,225 295 29,4 26,4 39,5

18,150 240 34,7 27,4 44,2

21,250 207 38,3 27,6 47,2

24,950 175 42,0 27,6 50,3

28,500 152 45,1 27,3 52,7

50,100 75 57,0 23,6 61,7  
Table 2 

 
 
As you can see the value of AL is 974nH/sp2, which is about 15% higher than the one 
calculated. From 2.46, establishing as the value of AL the value we can find in table 2, we 
obtain the minimum number of spires that we should have:  
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Keeping in mind as a reference the 9 spires obtained from 2.48, let’s verify if Xs remains 

over 900Ω  all throughout the useful bandwidth, always being conscious of the 
approximation by defect when applying 2.46. So, substituting to AL the values in table 2 we 
will find:  
 



f (MHz) 1,830 3,650 7,100 10,450 14,225 18,150 21,250 24,950 28,500

AL (nH/sp
2
) 974 687 471 370 295 240 207 175 152

Xs (Ω) 907 1276 1701 1967 2135 2216 2238 2221 2204

IL (dB) 20,06 22,77 25,11 26,31 26,98 27,29 27,38 27,31 27,25  
Table 3 

 

From the data in table 3 we can see that Xs always remains over 900Ω and that the IL 
remains always over the 20dB required all throughout the bandwidth. It seems like 
everything is going smoothly, even if we only estimated the inductive component to which 
the resistive component Rs will come to the aid (the one that only takes into account the 
losses in the ferrite). Yet, all of this will be partially eroded by the parasite capacity CP, 
starting from the frequency in point B. This parasite capacity is, unfortunately, very difficult 
to estimate before having actually built the choke.  
But now, let’s move onto winding the choke.  
To do that, let’s use the ferrite FT240-43, the same we used before for our measurements, 
and a coaxial cable which is able to handle the differential mode current (the one which 
supplies the balanced load). For the purpose, I used a deformable coaxial cable SM141-50 

I bought in lengths of 1.2m (3ft) at Friedrichshafenhamfest. After checking if it was 50 Ω, I 
looked up its specifics online [10]. The deformable coaxial cable, compared to the flexible 
(RG142B/U) ends up being: better adaptable, with a slightly smaller diameter and able to 
exceptionally maintain the shape once winded. The specifics of the cable SM141-50 are 
listed in table 4.   
 

Table 4 
 
It is a very well-made cable and it is able to handle way more than the standard 500W 
allowed to us Italian OMs.  
Now we need to find the average length of a spire.  
The simplest and quickest method consists in winding a spire of the chosen coaxial cable, 
mark the intersection point on both parts of the cable with a marker and then measure the 
distance between the two marks. In our case the average spire measures lwm=70mm. 
Then, we need to obtain the length of the line, making sure to add an extra spire for the 
connections.  

700)19(70)1( =+⋅=+⋅= PwmWP nll      [mm] 2.49 

Having calculated the number, what we need to do is rather simple: we need to wind four 
spires on one side and the remaining four on the other side, in order to have the input on 
one side and the output on the opposite. The total number of spires that are winded 
corresponds to the number of times the coaxial dives into the central hole; precisely 
4+1+4=9 spires (with the inversion, represented by the number 1, they always come out 
as an odd). 
 

Z0 50 Ω

K 0,695

Diametro esterno 4,14 mm

Tipo d'isolamento PTFE

Raggio min di curvatura 8 mm

PMAX @10MHz 3,45 kW

VMAX 1,9 kVrms

SM141-50



 
Fig.219 

 
Once the choke is built as shown in figure 219 and ready for connection, let’s move onto 
the testing. Let’s connect the choke to the network analyzer, as in figure 212; Vg and Rg 
are inside the tracking generator TX, while the resistance RL comes from the detector RX 
(the broken lines denote the limit points of the device). Then, let’s measure the parameter 
|S21| in dB and represent it on a logarithmic scale of frequencies, so that we’re able to 
compare the results with the Bode diagram of figure 206. I would like to remind that from 
2.25 we can draw IL=-20Log|S21|; so |S21| is equal to the IL, but specular compared to the 
graphic in figure 206. The measure is carried out with inner and outer conductors joint 
together. The result is shown in figure 220.  
 

 
Fig.220 

 



The marker n°10 represents point B, the same there was in figure 206, which corresponds 
to the resonance caused by the parasite capacity CP. The frequency of point B is 

fB=30,41MHz, while point A is out of scale at about 18KHz (at 18KHz Rs≈0 and µ'=800). 
For convenience I am reporting the values of IL of table 5. 
 

f (MHz) 1,830 3,650 7,100 10,450 14,225 18,150 21,250 24,950 28,500

IL (dB) 20,43 24,22 27,68 29,74 31,33 32,36 32,84 33,10 33,01  
Table 5 

It’s surprising how the value calculated at 1.83MHz is so close to the one measured. Yet, 
the initial segment, up until point B, slopes by less than -20dB/dec, while the segment that 
follows point B is way steeper than the +20dB/dec expected. The graphic resembles the 
specular image of the one in figure 206, without considering the slopes. This comforts us 
on the good built of the circuital model, even though it does not take into account the 
parameters RS and LS, which vary with the frequency.  
 
Just out of curiosity, let’s calculate the value of CP we obtain winding the 9 spires in the 
way you can see in figure 219. Let’s calculate the inductance LS at point B from 2.10 and 

2.11 (fB=30,41MHz) and using the graphic in figure 203 (µ'=103@30MHz which is 90 
increased by 15%) we have: 
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Having set N=9 spires, we can find from table 1 that Ae=1.58cm2 and le=14.5 cm. After 
deriving CP from 2.30b we obtain:  
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Just for verification, let’s measure the parasite capacity using the method suggested by [6]. 
Let’s assemble a circuit like the one in figure 207 and measure the frequencies of 
resonance respectively with C1=3,12pF and C2=4,91pF (the capacitors made of silver mica 
I found in my drawer). We obtain respectively f1=8,033MHz and f2=6,982MHz. From 2.18 
we can derive:  
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The capacities found with 2.51 and 2.52 differ one from the other by less than 1%, so I 
would say that the parasite capacity can be considered around 2.4pF. Now let’s verify the 
differential mode currents.  
Let’s start with finding the value of the coupling factor k. We need to measure the 

inductances Lpc=0,6µH ed Lpo=111µH with an LCR meter and using 2.9 we obtain that 
k=0.997; the value is close to the unit as we predicted. Then, let’s build the circuit in figure 
214 and measure the scatter parameter |S11| with the network: we are doing this because 
the impedance seen by the hatching line in figure 214 generates a reflection of the incident 

wave. Its coefficient of reflection Γ (gamma) is equal to S11 when the balanced port is 

closed on 50Ω [8], like in our case. Therefore, to have a correspondence between theory 
and reality in the practical measurements, we would need to obtain Zi from the scatter 
parameter S11. The mathematical relation between the two parameters is the following:  
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Where Zi is the impedance picked up by the unbalanced port of the choke and Zout is the 
impedance picked up by the balanced port of the choke. The return loss RL can be 
obtained from 2.54. This parameter expresses how much the reflected wave is reduced by 

the input port of the choke, when the output port is closed on Zout=50Ω:  

Γ−=−= LogSLogRL 2020 11   dB 2.54 

Therefore, when we measure impedances values which are very close to Zout (more or 
less) on the unbalanced input port, we know that the |S11| will be very small and the return 
loss very big. It’s not unusual to find RL values greater than 50dB. From the S11 we can 
also calculate the SWR we have at the input port of the choke.  
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The measuring setup is the one in figure 221:  
 

 
Fig.221 

 
The trace of the |S11| is the black one in the upper part of the graphic and it is represented 
in ohm over three decades (from 0.1 to 100MHz).  
 
 



 
Fig.222 

 
As you can see, figure 222 shows that the |S11| in dB stays always under -40dB, so Zi 
always maintains close to 50 Ohm; this means that the SWR is always very close to the 
unit. In particular, we have:  
 

f (MHz) 1,830 3,650 7,100 10,450 14,225 18,150 21,250 24,950 28,500

|S11| (dB) -55,69 -51,89 -48,45 -46,46 -44,88 -43,80 -43,06 -42,30 -41,69

Re Zi (Ω) 50,08 50,15 50,26 50,35 50,46 50,55 50,62 50,70 50,78

Im Zi (Ω) 0,14 0,20 0,28 0,32 0,34 0,34 0,34 0,32 0,27

SWR 1,003 1,01 1,01 1,01 1,01 1,01 1,01 1,02 1,02  
Tabella 6 

As theory predicted, the presence of the choke, does not influence on the differential mode 
currents. For a complete picture, let’s look at the values of frequency between whom the 
equation 2.42 is satisfied. From the graphic 223 (which represents the impedance Zc), let’s 
measure the values of frequency fl=535KHz and fh=65.1MHz in correspondence with 

10.R2=250 Ω. The values cover the entire range of frequency of our project.  
 
 



 
Fig.223 

 

Final considerations  

It seems like the choke we built lives up to our expectations already with 9 spires. Probably 
many of you would like to know what would happen if we used more spires. For this 
reason, I am providing table 7, with the values of the IL and point B for growing odd 
number of spires, until the maximum allowed with the cable SM141-50 and the ferrite 
FT240-43.  
 
f (MHz) 1,830 3,650 7,100 10,450 14,225 18,150 21,250 24,950 28,500 fB (MHz)

IL (dB) 9   spire 20,43 24,22 27,68 29,74 31,33 32,36 32,84 33,10 33,01 30,41

IL (dB) 11 spire 23,81 27,70 31,42 33,74 35,55 36,35 36,35 35,80 34,79 20,20

IL (dB) 13 spire 26,65 30,60 34,53 37,11 38,99 39,24 38,63 37,40 35,88 16,63

IL (dB) 15 spire 29,13 33,25 37,54 40,39 41,74 40,28 38,77 36,86 35,02 13,78

IL (dB) 17 spire 31,39 35,81 40,72 43,30 42,32 38,94 36,99 34,86 32,98 10,41  
Table 7 

The graphic in figure 224 illustrates the variations of the IL: you can notice how the 
measured attenuation keeps increasing in the first segment until point B (represented by a 
red dot). The latter moves towards lower and lower frequencies.  
 



 
Fig.224 

 
I also tried to wind the choke in another way (figure 225), but I did not notice any 
substantial variation compared to the winding in figure 219. The only difference is that the 
balanced and unbalanced port of the choke are on the same side, which adds a small 
parasite capacity due to the proximity of the two leads. 
 

 
Fig.225 

 
Out of curiosity, I built a toroid the same size of the FT240 with POM (Polyoxymethylene), 
commercially called Delrin®, which how the company that produces it (Dupont) named it.  
 



 
Fig.226 

 
POM responds to radiofrequency in a similar way to PTFE (polytetrafluoroethylene), but it 
has way better mechanical characteristics. The magnetic permeability of POM is around 
the one of air, so we can consider the winding as if it was winded in air. The graphic in 
figure 227 shows the impedance module diagram that the choke in figure 226 offers to the 
common mode currents.  

 
Fig.227 

 
As you can see the auto resonance is very noticeable and shifted towards f=51.87MHz. 

The bandwidth BW of the choke (at -20dB of attenuation, about 900Ω) ranges from 

38.66MHz to 68.06MHz (values that correspond to about 1000Ω), and therefore it comes 
out being BW=29MHz. We could think of using the choke in 6m band, but simply by getting 
my hand closer to it changes the shape of the trace (worsening the Q). This means that 



the ferromagnetic objects in the proximity of the choke have a greater influence when the 
spires are winded in air, making the use of the choke itself a bitvariable.  
I also winded, again, out of sheer curiosity, the 9 and the 17 spires of the deformable 
coaxial cable SM141-50 on a fiberglass tube having an external diameter of 16mm (I 
chose this specific measure not to hinder the minimum ray of curvature of the coaxial; see 
table 4). I then inserted into it a ferrite bar (bought from [10] with the code BF-58) having a 

permeability of µi=300, being 200mm long and with a diameter of 12mm. The bar has 
been inserted inside the fiberglass tube which had, winded on it, at first 9 spires and then 
17, as shown in figure 228.  
 

 
Fig.228 

I then proceeded to measure the impedance of the choke as described in figure 212. The 
results are reported in figure 229.  
 



 
Fig.229 

 
The black traces are the ones found without the ferrite inserted, while the red ones are the 
ones detected with the ferrite placed in. The taller red graphic and the lower frequency 
black one are the ones obtained with 17 spires, while the other two are the ones with 9. I 
am summing up in table 8 the values I found with the bar inserted.  
 

 
 Tabella 8 

 
It is not hard to understand that by properly choosing the number of spires it’s possible to 
center the bands where we can reduce the CMCs. I noticed that when moving the bar 
more to the left or to the right, the values of frequency move to the top, while the values of 
the impedance decrease; this allows us, within certain limits, to better set the choke. I 
conducted tests even with the bar BF-55 (also bought from [10]), which has a higher 

permeability µi=400, but a smaller diameter of 10mm, while the length is always 200mm: 
this test produced very poor results. I cannot give an explanation on why this happened, 
because I do not know any characteristic relative to the ferrite mixture. I own, so I can only 
make hypothesis. I also measured the inductance factor AL of different toroid with different 
gradations that I included in table 9.  
 



Tabella 9 
 
In conclusion, you might wonder whether is better or not to use a choke. The answer is 
that it is probably better to use one where there are common mode currents that need to 
be blocked. The common mode currents are produced by the moving of the charges in 
both the two conductors of the line in the same direction; therefore, the best place to block 
them is a place which is the closest to where they originate. For example: if it is the case of 
a radiant dipole, it is better to place the choke closer to the terminals of the antenna, to 
avoid the cable from becoming a radiating part itself, causing a serious deformation of the 
radiation lobe of the antenna.  
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