SCOPRIAMO INSIEME IL "CHOKE" O "BALUN DI CORRENTE"

(Pubblicato su RR 6-7/2019) Rev.2 del 24/11/2019

Generalità

Queste brevi note per trattare la funzione del dispositivo più comunemente chiamato "choke" o "balun di corrente" ma più propriamente detto common mode choke. La trattazione inizia con un'introduzione teorica ed a seguire un esempio pratico completo di misure di efficacia.

Durante l'articolo do per scontato che le correnti e le tensioni siano di tipo sinusoidale e si possano usare i fasori per rappresentarle inoltre sono consapevole di aver usato modelli con componenti discreti anche se talvolta le lunghezze fisiche dei dispositivi sono paragonabili alle lunghezze d'onda utilizzate.

Correnti di modo comune e differenziali

Per inquadrare l'argomento, indicato nel titolo del paragrafo, consideriamo un tratto di linea bifilare posta nello spazio, lontana da qualsiasi riferimento di terra, della quale non conosciamo la provenienza e nemmeno dove essa termini; una situazione del tutto astratta ed irreale [1].

Fig.201

Misuriamo poi le correnti che precorrono i due conduttori di figura 201, senza interferire, così potremmo pensare che le correnti I_1 ed I_2 siano composte da una componente di modo comune I_C (CMC) ed una componente di modo differenziale I_D (CMD) legate dalle relazioni seguenti:

I_1	$I_{c} + I_{D}$	2.1a
I_{γ}	$I_c - I_p$	2 1h

ove immaginiamo che le correnti di modo comune I_C percorrano i due conduttori nello stesso verso mentre le correnti differenziali I_D li percorrano in direzione opposta. Per entrambe le correnti ipotizziamo che i moduli delle I_D siano uguali così come quelli delle I_C . Ciò rende le correnti differenziali più intuitive perchè si possono pensare come quelle che provengono da un conduttore e ritornano dall'altro mentre le correnti di modo comune devono necessariamente tornare per altra via.

Resta il fatto che le correnti differenziali I_D , se i due fili della linea sono vicini (in relazione alla lunghezza d'onda), generano campi EM che, nello spazio circostante la linea, si annullano a vicenda mentre i campi EM generati dalle correnti di modo comune I_C si sommeranno e di conseguenza irradieranno. Permettetemi di non approfondire l'argomento più di così; per non divagare dalla trattazione.

Le equazioni 2.1 si possono rimaneggiare nel seguente modo:

$$I_{\rm D} = \frac{I_1 - I_2}{2}$$

$$I_{\rm C} = \frac{I_1 + I_2}{2}$$
2.2a
2.2b

$$c^2 = 2$$

IW2FND Attolini Lucio, via XXV Aprile 52/b 26037 San Giovanni in Croce (CR)

Osserviamo che se le correnti I_1 ed I_2 fossero uguali in modulo ed opposte nel verso allora $I_1 = -I_2$ per cui, dalle equazioni 2.2, risulterà che:

$$I_D = \frac{I_1 + I_1}{2} = I_1$$
 e $I_C = 0$ 2.3

L'altro caso estremo è quello ove è presente la corrente di modo comune I_C e la corrente di modo differenziale I_D nulla.

Il common mode choke ideale

Il common mode choke, detto semplicemente choke, è un dispositivo che viene utilizzato per ridurre le correnti di modo comune I_C senza alterare le correnti di modo differenziale I_D che percorrono la linea.

Il choke spesso si realizza inserendo un anello di ferrite nella linea in modo da avvolgere entrambi i conduttori (Fig.202a) ma si può ottenere anche avvolgendo la linea in aria (ma si ottengono induttanze inferiori). In prima approssimazione il choke si può modellare con una coppia di induttanze L1 ed L2 tra loro mutuamente accoppiate M; figura 202b.

Se, come abbiamo ipotizzato in precedenza, le correnti differenziali I_D , che compongono le correnti I_1 ed I_2 , sono uguali in modulo ed opposte nel verso (fig.201) daranno origine anche nella ferrite a due flussi uguali ed opposti che si annullano tra loro. Infatti sui rami della linea della fig. 202b si manifestano le seguenti impedenze:

$$Z_{1} = \frac{V_{1}}{I_{1}} = \frac{j\omega L_{1}I_{1} + j\omega MI_{2}}{I_{1}}$$
2.4a

$$Z_{2} = \frac{V_{2}}{I_{2}} = \frac{j\omega L_{2}I_{2} + j\omega MI_{1}}{I_{2}}$$
 2.4b

Ora se sostituiamo la I_1 e la I_2 con quelle delle 2.1 otteniamo:

$$Z_{1} = \frac{j\omega L_{1}(I_{C} + I_{D}) + j\omega M(I_{C} - I_{D})}{I_{C} + I_{D}} = \frac{j\omega I_{C}(L_{1} + M) + j\omega I_{D}(L_{1} - M)}{I_{C} + I_{D}}$$
2.5a

$$Z_{2} = \frac{j\omega L_{2}(I_{C} - I_{D}) + j\omega M(I_{C} + I_{D})}{I_{C} - I_{D}} = \frac{j\omega I_{C}(L_{2} + M) - j\omega I_{D}(L_{2} - M)}{I_{C} - I_{D}}$$
2.5b

Se supponiamo: che $L_1=L_2=L$; che l'accoppiamento tra gli avvolgimenti sia perfetto (k=1) cioè che M=L e che la corrente di modo comune $I_C=0$ le 2.5 diventano:

$$Z_{1} = \frac{j\omega I_{D}(L-M)}{I_{D}} = 0$$
 2.6a

$$Z_{2} = \frac{-j\omega I_{D}(L-M)}{-I_{D}} = 0$$
 2.6b

In pratica l'impedenza vista dalle correnti differenziali è nulla. Infatti i flussi che le correnti differenziali generano nella ferrite sono uguali ed opposti quindi si annullano a vicenda; così anche l'impedenza generata dall'induttanza sarà nulla.

Supponendo ancora che: $L_1=L_2=L$; che l'accoppiamento tra gli avvolgimenti sia perfetto (k=1) cioè che M=L ma che questa volta sia la corrente di modo differenziale $I_D=0$ allora le 2.5 diventano:

$$Z_{1} = \frac{j\omega I_{c}(L+M)}{I_{c}} = j2\omega L$$

$$Z_{2} = \frac{j\omega I_{c}(L+M)}{I_{c}} = j2\omega L$$
2.7a
2.7b

In pratica l'impedenza vista dalle correnti di modo comune non è affatto nulla anzi è esaltata dall'accoppiamento degli avvolgimenti. Se avessimo usato due ferriti tra loro uguali ma fisicamente separate, una su ogni conduttore, l'accoppiamento mutuo sarebbe stato nullo M=0 e quindi il fattore 2 dalle 2.7 sarebbe sparito.

Quindi in prima approssimazione sembra che il choke risponda alle aspettative cioè: ostacoli le correnti di modo comune che transitano sulla linea senza influenzare quelle di modo differenziale.

Le correnti di modo comune nel choke in ferrite

Ora vedremo il choke reale realizzato con ferrite.

Nell'utilizzo pratico delle ferriti, e dai grafici della permeabilità, si capisce che alle basse frequenze domina la componente induttiva (μ ') ma mano a mano che si alza la frequenza diventa sempre più importante la componente dissipativa (μ ") che tiene conto delle correnti parassite nel materiale ferromagnetico e delle perdite per isteresi. Ciò permane fino ad un certo limite di frequenza, diverso da materiale a materiale, oltre il quale la ferrite perde ogni caratteristica ferromagnetica [2]. Nel grafico di figura 203 (preso da [3]) sono rappresentate le permeabilità in funzione della frequenza della ferrite al NiZn di grado 43 (quella che si presta meglio all'uso nelle bande HF amatoriali).

Fig. 203

La componente dissipativa tipicamente si modella con una resistenza R_s in serie all'autoinduttanza L_s ma, come si vede dalla figura 203, sia il valore dell'autoinduttanza L_s che quello di R_s sono pesantemente dipendenti dalla frequenza e dal materiale (oltre che dalla temperatura di lavoro).

Pertanto, il choke può essere rappresentato dal circuito di figura 204 [4] (che è anche quello adottato dagli LCR meters):

Fig.204

Dove $Z_s = R_s + jX_s$

I parametri della 2.8 sono legati al materiale ferromagnetico utilizzato nel seguente modo:

$$R_{s} = \omega L_{0} \mu_{s}^{"}$$
, $X_{s} = \omega L_{0} \mu_{s}^{'} = \omega L_{s}$ ove $L_{0} = \mu_{0} \frac{N^{2} A_{e}}{l_{e}}$ 2.9

l parametri μ_s ' e μ_s " sono le componenti reale ed immaginaria della permeabilità complessa; tipiche del materiale ferromagnetico usato [5]. L₀ invece è l'autoinduttanza che si avrebbe se il materiale ferromagnetico fosse assente; L₀ dipende solo dalla geometria e dal numero di spire al quadrato.

L'autoinduttanza L di un induttore può essere calcolata anche tramite il fattore d'induttanza A_L moltiplicato il numero di spire N al quadrato.

$$L = N^2 A_L$$
 2.10

con

$$A_{L} = 4\pi\mu_{s} \frac{A_{e}}{l_{e}} [\mathsf{nH/sp}^{2}]$$
 2.11

Ove A_L è in nH/sp², l'area effettiva della ferrite A_e in cm² e la lunghezza effettiva del circuito magnetico I_e in cm; entrambi questi ultimi parametri sono dati dal costruttore perchè non sono facili da calcolare. Il fattore d'induttanza A_L , invece, può essere facilmente trovato perchè corrisponde all'autoinduttanza di una sola spira espressa in nH. Inoltre, quando il choke è realizzato con più spire avvolte si presentano delle capacità parassite C_P (dovute al conduttore avvolto) la cui reattanza, al crescere della frequenza, tende ad annullare l'effetto dell'induttanza. Un modello a parametri concentrati, abbastanza accurato, che descrive un choke reale nel campo utile della ferrite è il seguente:

Fig.205

Se ipotizziamo che il circuito di fig. 205 sia simmetrico, possiamo semplificare ponendo tutti gli elementi col pedice 1 uguali a quelli col pedice 2, cioè: $I_{C1}=I_{C2}$; $I_{K1}=I_{K2}=I_K$; $I_{P1}=I_{P2}=I_P$;

2.8

 $C_{P_1}=C_{P_2}=C_P$; $L_1=L_2=L$; $R_1=R_2=R$. Con tale ipotesi l'impedenza che si presenta alle correnti di modo comune sarà uguale in entrambi i rami e sarà:

$$Z_{1C} = Z_{2C} = \frac{V_1}{I_{C1}} = \frac{j\omega LI_K + j\omega MI_K + RI_K}{I_K + I_P}$$
2.12

ove I_P è uguale a:

$$I_{P} = \frac{V_{1}}{X_{CP}} = j\omega C_{P} (j\omega LI_{K} + j\omega MI_{K} + RI_{K})$$
2.13

Che se sostituita nella 2.12 e semplificata, ponendo M=L, si ottiene:

$$Z_{1C} = Z_{2C} = \frac{j\omega LI_{K} + j\omega MI_{K} + RI_{K}}{I_{K} + j\omega C_{P}(j\omega LI_{K} + j\omega MI_{K} + RI_{K})} = \frac{j\omega 2L + R}{1 - \omega^{2} 2LC_{P} + j\omega RC_{P}}$$
2.14

L'equazione 2.14 è piuttosto complessa ma se ignoriamo il termine di primo grado al denominatore $j\omega RC_{P=}0$ e la portiamo nella forma di Bode si può rappresentare facilmente individuandone i punti salienti.

$$Z_{1C} = Z_{2C} = \frac{j\omega 2L + R}{1 - \omega^2 2LC_p} = R \frac{\frac{\frac{j\omega}{R} + 1}{2L}}{-\left(\frac{\omega}{\frac{1}{\sqrt{2LC_p}}}\right)^2 + 1}$$
2.15

IMPEDENZA $Z_{\rm C}$ VISTA DALLE CORRENTI DI MODO COMUNE

Fig.206

Come si può vedere dalla figura 206 l'impedenza, al crescere della frequenza, si presenta piatta partendo dal valore 20Log(R) fino al punto A ove comincia a crescere di 20dB/decade; continua a crescere fino al punto B ove inizia a decrescere con pendenza 20dB/decade. Si intuisce facilmente che nel punto B si ha una risonanza di tipo parallelo (il cui smorzamento è stato trascurato) e che i punti A e B corrispondono rispettivamente ad uno zero e a due poli (riporto solo quello a frequenza positiva) che cadono nei seguenti valori di f:

$$A \Rightarrow f_A = \frac{R}{4\pi \cdot L}$$

$$B \Rightarrow f_B = \frac{1}{2\pi\sqrt{2LC_P}}$$
2.16
2.17

I due punti non sono facili da calcolare perché sia R che L dipendono dalla frequenza (vedi le 2.9) e la capacità parassita C_P è spesso imperscrutabile; vi sono delle formule semiempiriche che tentano di stimare l'autocapacità di un avvolgimento, come la formula di Medhurst, ma considerano solenoidi particolari (lunghi, cilindrici ed in aria). Nel nostro caso possiamo utilizzare la formula che trovate in [6] che invece esamina il caso di avvolgimenti su soft ferriti; tramite la soluzione delle equazioni di Maxwell mediante elementi finiti. Nella pratica C_P si trova misurando la frequenza di risonanza di un induttore, modellato come in figura 207, con in parallelo una capacità nota.

Fig.207

La misura si effettua con una prima capacità nota C_1 e si ripete poi con un'altra capacità nota C_2 . Le due frequenze di risonanza trovate con le due capacità f_1 ed f_2 (in MHz) si combinano nella formula seguente:

$$C_{P} = C_{1} \frac{\frac{C_{2}}{C_{1}} \left(\frac{f_{2}}{f_{1}}\right)^{2} - 1}{1 - \left(\frac{f_{2}}{f_{1}}\right)^{2}} \operatorname{con} C_{1}, C_{2} \in C_{P} \text{ in pF}$$
2.18

Vedremo più avanti che la curva di figura 206 rappresenta abbastanza bene le misure in campo.

Per ora, ciò che ci interessa è ricavare degli spunti per la costruzione per cui osserviamo che il punto A dipende dal rapporto tra R ed L della ferrite mentre il punto B si sposta verso le alte frequenze mano a mano che il denominatore diventa piccolo.

Alle basse frequenze R si avvicina alla resistenza DC, perché la reattanza causata da C_P è trascurabile, pertanto l'impedenza diventa quella descritta dalle 2.7; quindi:

$$Z_{1C} = Z_{2C} = j2\omega L$$

2.19

Nella zona intermedia tra il punto A e prima del punto B l'impedenza dipende dalla X e dalla R. Ricordo però che la R non è propriamente un resistore, con una ben determinata resistenza, ma la R è la rappresentazione delle perdite nella ferrite (quelle che la scaldano per intenderci) ove si fanno confluire anche le resistenze dei conduttori (effetto pelle). Per cui fisicamente R non è una resistenza ma il fenomeno fisico si comporta come una resistenza; per questo motivo non ha un valore costante ma cambia al variare: dalla frequenza; dalla permeabilità μ " (che varia a sua volta con la frequenza); dalla temperatura; dalla geometria e dal tipo di ferrite.

Un tipico esempio di choke per le correnti di modo comune è rappresentato dalla figura 208 presa da [7]. Come potete vedere (traccia blu) la realtà è diversa ma rispetta abbastanza il modello assunto ed anche le semplificazioni introdotte. Nella figura 208 il punto A è presente intorno ai 30MHz (nei nostri casi è invece è intorno ai 10kHz). Il punto B invece è piuttosto evidente intorno ai 900MHz; la presenza di una cuspide, più o meno accentuata, dipende dal fattore di smorzamento; quello che noi abbiamo trascurato eliminando il termine di primo grado nella 2.14.

Fig.208

Le correnti di modo differenziale nel choke in ferrite

Le correnti di modo differenziale I_D nel choke reale in ferrite, invece, non trovano ostacoli significativi perchè generano un flusso molto piccolo (in teoria nullo - formula 2.6) causato dai flussi dispersi che, anche se piccoli, non rendono il mutuo accoppiamento perfetto e quindi nella realtà k≠1.

Apro una parentesi: il coefficiente di accoppiamento k e l'autoinduttanza L_{po} possono essere agevolmente misurati con un ponte riflettometrico o con un'analizzatore d'antenna. Infatti l'autoinduttanza L_{po} è l'induttanza del primo avvolgimento L_1 con l'altro aperto mentre il valore L_{pc} si misura sempre sul primo avvolgimento ma col secondo L_2 in corto circuito. Noti i valori di L_{po} ed L_{pc} , misurati alla frequenza di lavoro, con la 2.20 si calcola il coefficiente d'accoppiamento *k*:

$$k = \sqrt{1 - \frac{L_{pc}}{L_{po}}} \approx 1$$
2.20

Il valore della mutua induttanza M è poi ricavato dalla formula 2.21:

$$M = k\sqrt{L_1 \cdot L_2} = k \cdot L \approx L$$
2.21

Essendo l'accoppiamento imperfetto parte del flusso si disperde nell'aria circostante senza che si concateni con le spire dei conduttori. Tale flusso disperso, essendo in aria, non produrrà alcun effetto dissipativo nella ferrite ed avrà la permeabilità costante vicina a quella del vuoto ($\mu_0=4\pi 10^{-7}$ H/m). I più attenti potrebbero obiettare perchè un pò di flusso generato dai conduttori penetra nella ferrite, soprattutto nei punti di contatto, ma è una frazione trascurabile. L'accoppiamento imperfetto però produce M \neq L e quindi le 2.6 diventano:

$$Z_{1D} = Z_{2D} = \frac{j\omega I_D(L_s - M)}{I_D} = j\omega (L_s - M) = j\omega L_s (1 - k) \approx 0$$
2.22

La differenza tra L_s ed M è veramente molto piccola (k è spesso maggiore di 0,99) per cui gli effetti sulle correnti differenziali si fanno sentire solo a frequenze molto elevate, ben oltre il punto B di figura 206. A quelle frequenze si fanno sentire anche gli effetti dovuti alle capacità parassite e alla resistenza, per effetto pelle, dei conduttori (le perdite nel dielettrico in HF sono ancora trascurabili); per cui si ripropone un modello simile a quello di figura 205.

Quindi l'impedenza vista dalla corrente differenziale, nel campo d'interesse, avrà in serie la resistenza generata dall'effetto pelle R_w che, nel caso di conduttori di rame è:

$$R = 83,04 \cdot 10^{-6} \frac{l_w}{d_w} \sqrt{f}$$
 con l_w, d_w in mm e f in MHz **2.23**

Ergo, la capacità parassita associata all'induttanza di perdita darà origine ad una risonanza parallelo a frequenze molto più alte rispetto al punto B, visto in precedenza per le correnti di modo comune, é solitamente al di fuori del campo di utilizzo del choke; vedi la traccia verde in figura 208.

Correnti di modo comune in un circuito

Ora esaminiamo cosa succede alle correnti di modo comune (CMC) quando inseriamo un choke in ferrite in una linea di trasmissione che collega un generatore al suo carico.

Il circuito di prova proposto è quello di figura 209. Il generatore muove la corrente I_g , posto che le resistenze $R_1=R_2=R_3=R_4=50\Omega$ sono in serie sui due percorsi e questi ultimi sono tra loro in parallelo, il generatore vedrà una risultante di $R=50\Omega$. Inoltre, dato che i due percorsi li pensiamo anche simmetrici, le correnti $IC_1=IC_2=I_g/2$ si possono considerare di modo comune perchè uguali sia sul centrale e sia sulla calza. Il circuito elettrico equivalente sarà quindi quello di figura 210.

Il circuito di figura 210 è molto utile per poter misurare le correnti di modo comune I_{C1} ed I_{C2} (si ricavano dalla caduta di tensione sulle rispettive R) e le cadute di tensione sul tratto di linea V_1 e V_2 . Se poi utilizziamo una ferrite a 'clip' possiamo vedere l'influenza che ha sulle correnti di modo comune con e senza la ferrite inserita.

Ipotizziamo che le induttanze prodotte dalla ferrite siano uguali $L_1=L_2=L$ (nel caso di linea coassiale non è propriamente vero ma è accettabile) e che l'accoppiamento tra le due sia perfetto (per cui M=L); ciò è abbastanza vero per le linee in coassiale e meno per le linee bifilari. In questo modo si avrà:

$$Z_1 = j\omega L_1 + J\omega M = j\omega 2L$$

$$Z_2 = j\omega L_2 + J\omega M = j\omega 2L$$

2.24a 2.24b

La tensione ai capi delle due induttanze è uguale $V_1=V_2=V$ perché tra loro in parallelo. Quindi la caduta di tensione ai capi di dette induttanze sarà:

$$V = j\omega 2LI_c = j\omega LI_a$$

2.25

Osserviamo bene la 2.25, essa in pratica ci dice che il flusso Φ_T generato nella ferrite dalle correnti di modo comune I_{C1} ed I_{C2} è uguale al flusso che genererebbe la corrente I_g se passasse da sola su di un unico conduttore.

Ovvio direte, perché $I_g=I_{C1}+I_{C2}$ ma non sono ovvie le ricadute di ciò.

Infatti: le perdite nella ferrite (R_S) sono quelle causate dal flusso Φ_T generato dalla corrente I_g (nella R_S sono inserite anche le perdite nei conduttori, ritenute trascurabili), inoltre la linea di trasmissione può essere sostituita con un conduttore percorso dalla corrente totale I_g . Quest'ultima semplificazione, realizzabile saldando tra loro i due conduttori della linea, permette di studiare il choke in modo semplice; a meno delle perdite per effetto pelle nei conduttori (che nel caso di linea coassiale sono tra loro leggermente diverse). La capacità parassita C_P , che limita la banda passante del choke, è ugualmente presente e, se usiamo il coassiale cortocircuitato agli estremi, resta pressoché uguale.

In altre parole, per studiare il nostro choke possiamo adottare il modello a parametri concentrati di figura 211 perché approssima abbastanza bene la realtà nelle bande HF.

Nel modello circuitale sono rappresentate l'autoinduttanza $L_S=L$ e le perdite nella ferrite R_S (il pedice $_S$ sta per modello serie), entrambi i parametri sono fortemente dipendenti dalla frequenza (vedi figura 204 ed equazioni 2.9). Le perdite per effetto pelle nei conduttori della bobina sono inseriti nella R_S (nel nostro caso le perdite nella ferrite sono molto maggiori di quelle nel conduttore). Infine, la capacità parassita C_P , esattamente come abbiamo già visto nella figura 205, è considerata indipendente dalla frequenza (questo è abbastanza vero finché la frequenza resta al di sotto della frequenza di auto risonanza).

Dal modello di figura 211 è bene ricavare il parametro scatter S₂₁ [8] perché è ciò che un analizzatore di reti misura ed è strettamente legato all'insertion loss IL. Infatti

$$IL = -20Log |S_{21}| dB$$

2.26

Come possiamo vedere dalla 2.26 l'insertion loss IL in dB rappresenta l' $|S_{21}|$ in dB in modo speculare rispetto all'asse delle frequenze (in realtà S_{21} è il reciproco dell'IL ciò viene reso dal segno meno davanti al logaritmo).

Per ricavare IL conviene rinfrescare la definizione di insertion loss ed esprimerla in corrente dove P' è potenza dissipata su un ipotetico carico R senza il choke mentre P è quella che si avrebbe sul carico R col choke inserito.

$$IL = 10Log \left| \frac{P'}{P} \right| = 10Log \left| \frac{I_g^{2'}R}{I_g^{2}R} \right| = 20Log \left| \frac{I_g}{I_g} \right| \quad \mathsf{dB}$$
 2.27

Il modello circuitale di figura 211, è del tipo di quelli rappresentati in figura 212; vedi [1].

Per cui l'insertion loss causato dall'impedenza Z è il seguente:

$$IL = 20Log \left| 1 + \frac{Z}{R_g + R_L} \right|$$
 2.28

L'impedenza Z è già nota dalla 2.14 se poniamo $L_s=2L$ ed $R_s=R$ (ricordo che R_s rappresenta le perdite nella ferrite, L_s l'induttanza dell'avvolgimento con la ferrite e C_P la somma delle capacità parassite; come da 2.9); per cui si ricava:

$$IL = 20Log \left| 1 + \frac{1}{R_g + R_L} \left(\frac{R_s + j\omega L_s}{(1 - \omega^2 L_s C_P) + j\omega C_P R_s} \right) \right|$$
 2.29

In pratica ci ritroviamo la curva tracciata in figura 206 divisa per il partitore R_g+R_L e sommata all'unità. I punti salienti A e B sono ancora quelli delle 2.16 e 2.17:

$$A \Rightarrow f_A = \frac{R_s}{2\pi L_s}$$
2.30a

$$\mathsf{B} \Rightarrow f_B = \frac{1}{2\pi\sqrt{L_S C_P}}$$

Riporto anche l'equazione del modulo per completezza:

$$IL = 20Log \left[1 + \frac{1}{R_g + R_L} \sqrt{\frac{R_s^2 + \omega^2 L_s^2}{(1 - \omega^2 L_s C_P)^2 + (\omega C_P R_s)^2}} \right]$$
 2.31

Dalla 2.31 si trova facilmente che in continua si ha $R_S=L_S=C_P=0$ per cui: $IL_0 = 20Log(1) = 0$

Alle alte frequenze, ove domina la reattanza di C_P, si ha R_S ed L_S piccole (perchè crolla μ ' e μ ") e sono bypassate dalla capacità parassita. Per cui si ha:

$$IL_{H} \approx 20Log(1) = 0$$
2.33

Alle basse frequenze L_S domina mentre C_P ed R_S non si fanno ancora sentire si ha:

$$IL \approx 20 Log \left(1 + \frac{\omega L_s}{R_g + R_L} \right)$$
 2.34

Lontano dai valori estremi la curva è simile a quella già vista in figura 206. Infine, è possibile ricavare l'equazione dell'impedenza Z vista tra le due linee di tratteggio di figura 212:

$$Z = \frac{R_s + j\omega L_s}{(1 - \omega^2 L_s C_P) + j\omega C_P R_s}$$
2.35

IW2FND Attolini Lucio, via XXV Aprile 52/b 26037 San Giovanni in Croce (CR)

Pagina 10 di 25

2.32

Correnti di modo differenziale in un circuito

Ora esaminiamo cosa succede alle correnti di modo differenziale (CMD) quando inseriamo un choke in ferrite in una linea di trasmissione che collega un generatore al suo carico.

Dalla figura 213 osserviamo che il generatore di radiofrequenza, sbilanciato verso terra, causa la corrente I_d , che entra in uno dei due conduttori della linea (in questo caso nel centrale del coassiale), attraversa la prima metà del carico fino al nodo N e, se $I_c=0$, ritorna dal la calza del coassiale proseguendo uguale verso la massa del generatore V_g . In questo caso la corrente I_d è tutta di modo differenziale, il suo modulo non cambia durante il suo tragitto. Tutto ciò se la corrente I_c è nulla e/o se il tratto che va dal nodo N a terra non c'è; così da rendere il carico flottante come rappresentato in figura 214.

Fig.214

Come abbiamo già visto nel paragrafo iniziale (equazione 2.22), nel caso in cui la corrente I_C sia uguale a zero e l'accoppiamento tra le due spire sia quasi perfetto (k≈1), le induttanze L_1 ed L_2 viste dalle CMD sono molto piccole, perchè sono generate dai flussi dispersi, ed in serie alla corrente di modo differenziale $I_{D1}=I_{D2}=I_D$. Quindi posto: $L_S=L_1=L_2$, $R_L=R_1+R_2$, si ha:

$$Z_{D} = j2\omega(L_{s} - M) = j2\omega L_{s}(1 - k) \approx 0$$

2.36

Quindi l'impedenza vista dalla corrente di modo differenziale I_D , quando $I_C=0$, è effettivamente molto piccola e comparabile con la perdita nei conduttori (espressa dalle 2.23); ma anche queste sono molto contenute per cui, nella configurazione di figura 214, il generatore vede praticamente solo il carico R_L . A frequenze molto alte, invece, cominciano a pesare le induttanze di dispersione della 2.36; come si vede dalla traccia verde in figura 208.

Nel caso in cui la corrente di modo comune I_C , di figura 213, non fosse nulla la situazione sarebbe quella di figura 215.

In questo secondo caso la corrente I_C sarà:

$$I_C = I_1 - I_2 \neq 0$$

Da cui consegue che:

 $I_1 \neq I_2 \neq I_d$

2.38

2.37

Il circuito di figura 215, supposto essere simmetrico, può essere modellato nel seguente modo:

Con riferimento alla figura 215, nel percorso tra il nodo N e terra scorrerà la sola corrente di modo comune I_c (supposta essere di conduzione) che sarà ostacolata dalla sola impedenza generata da L_s , $R_s \ e \ C_p$, figura 216. Ipotizzando che le correnti I_1 ed I_2 di figura 216 siano:

$$I_1 = I_d + \frac{I_c}{2}$$
 2.39a
 $I_2 = I_d - \frac{I_c}{2}$ 2.39b

Ed applicando la sovrapposizione degli effetti, risulta evidente che:

quando $I_c=0$ le correnti $I_1 = I_2 = I_d$ e la corrente I_d attraversa la sola impedenza Z_d : $Z_d = (R_1 + R_2) + j2\omega L_s(1-k) \approx R_1 + R_2$ 2.40

Il 'circa' è d'obbligo perché il coefficiente di accoppiamento k \approx 1 così da annullare il termine immaginario della 2.40.

- quando $I_d=0$ circolerà la sola corrente I_c che è limitata dall'impedenza Z_c (Z_c è ancora quella della 2.35).

$$Z_c = \frac{R_s + j\omega L_s}{(1 - \omega^2 L_s C_P) + j\omega R_s C_P}$$
2.41

Alla luce della 2.40, il circuito di figura 216 diventa il seguente:

Dal circuito di figura 217 risulta ancor più evidente che il blocco L_s, R_s e C_p (la cui impedenza Z_c è data dalla 2.35) si trova in parallelo alla resistenza R₂. Ciò è particolarmente antipatico perchè la corrente di modo differenziale, quando l'impedenza Z_c non è abbastanza grande, non ritorna tutta attraverso R₂ e ciò avviene anche se il carico R₁ + R₂ è adattato alla linea.

Quindi il generatore V_g, con la sua resistenza interna R_g, se vedesse un carico perfettamente adattato (cioè R_g = Z₀ = R₁ + R₂ con R₁ = R₂) nel momento in cui si pone a massa il punto centrale N (quello tra R₁ ed R₂) immediatamente si disadatta; a causa del fatto che la resistenza R₂ si trova in parallelo con Z_c. Tale disadattamento si farà sempre più sentire mano a mano che diminuisce il modulo di Z_c fino a che Z_c non cortocircuiterà del tutto R₂ lasciando che tutta la corrente l₁ attraversi la sola R₁ e torni a massa come corrente di modulo di Z_c sia il più grande possibile in modo da influire il meno possibile nel parallelo con R₂. Questa condizione, nella pratica, si realizza già con valori di Z_c maggiori di almeno 10 volte R₂:

$$|Z_c| \ge 10R_2$$

2.42

La funzione di trasferimento dell'impedenza di blocco Z_c è tracciata, per sommi capi, in figura 206 ove appare evidente che vi sono due valori di frequenza che marcano il confine dove, all'interno dei quali, la 2.42 è soddisfatta.

Mi fermo qui per non appesantire la trattazione, già abbastanza corposa ma se qualcuno ne volesse sapere di più mi può sempre scrivere.

Considerazioni sulla potenza

Quando un choke in ferrite lavora si crea un flusso Φ che si oppone al passaggio della corrente di modo comune, di conseguenza si manifesta una caduta di tensione V ai capi dei conduttori che attraversano il choke.

La potenza gestibile da un dato choke dipende sostanzialmente da tre fattori: le perdite nei conduttori; le perdite nella ferrite ed il massimo flusso sostenibile.

Le perdite nei conduttori della linea alle alte frequenze provoca il loro riscaldamento per effetto Joule. Infatti la legge di Joule dice che il calore generato $Q=R I_C^2 t$ (dove R resistenza, I_C corrente CMC e t il tempo) ove la R del conduttore alle alte frequenze aumenta con la radice della frequenza di lavoro (vedi 2.23).

Le perdite nella ferrite sono invece dovute principalmente alle Correnti parassite ed alle perdite per isteresi. Tali perdite generano calore e sono rappresentate nei nostri modelli dalla resistenza R_S. Le Correnti parassite sono direttamente proporzionali alla frequenza di utilizzo (oltre che dalla permeabilità e da altri fattori legati al materiale utilizzato) mentre le

perdite per isteresi, a parità di frequenza, sono direttamente proporzionali all'ampiezza delle correnti di modo comune che sostengono il flusso.

Mentre, il flusso massimo in una ferrite deve essere limitato perchè se supera il punto di saturazione la permeabilità relativa della ferrite crolla a valori vicini a quelli dell'aria ≈1 e ciò causa non linearità che danno origine a distorsioni e quindi armoniche.

Purtroppo è molto difficile stimare la corrente di modo comune che verrà bloccata e di conseguenza non saranno note a priori né le correnti di modo comune né la caduta di tensione V che si manifesterà ai capi del choke; sarà invece nota la corrente di modo differenziale (CMD) che la linea dovrà trasportare; ma serve solo per dimensionare i conduttori. Nonostante questo possiamo fare alcune considerazioni: la maggiore potenza dissipata avviene alle frequenze più elevate, pertanto le prove di tenuta dovremo farle alle frequenze più elevate di utilizzo; maggiore è il calore sviluppato maggiore sarà la necessità di dissiparlo in ambiente, quindi per non avere innalzamenti di temperatura tali da raggiungere il punto di Curie è necessario tenere basse le perdite nella linea e nella ferrite; inoltre dobbiamo fare in modo che l'eventuale calore generato possa essere facilmente dissipato in ambiente.

Costruire un choke

Dopo tanta teoria urge mettere qualcosa in pratica altrimenti ci sfugge il senso pratico delle cose.

Vediamo quindi di realizzare un choke in cavo coassiale da inserire in una linea di trasmissione (sempre in coassiale) che alimenta un carico bilanciato e facciamo in modo che attenui le correnti di modo comune di almeno -20dB nella banda 1,83 ÷ 28 MHz.

Dalla teoria sappiamo che il punto di lavoro più critico per il choke è quello alle basse frequenze mentre la banda passante è limitata alle alte frequenze dalla capacità parassita C_P ; che minimizzeremo riducendo al minimo le spire e distribuendole su tutta la ferrite.

Poiché si desidera un'attenuazione di -20dB dalla 2.26 deduciamo che l'insertion loss causato dal choke dovrà essere IL=20dB. Quindi rimaneggiando la 2.28 otteniamo che:

$$|Z| = (R_s + R_L) \cdot \left(10^{\frac{L}{20}} - 1\right)$$
 2.43

Di solito l'analizzatore di spettro ha $R_S=R_L=50\Omega$; per cui se poniamo nella 2.43 IL=20dB otteniamo:

$$|Z| = 100 \cdot \left(10^{\frac{20}{20}} - 1\right) = 900 \ \Omega$$
 2.44

Ipotizziamo di voler utilizzare una ferrite FT240-43. Dalla figura 203 si intuisce che la permeabilità dominante alla frequenza più bassa f_L della banda di utilizzo è μ_s '≈620. Quindi possiamo considerare che |Z| desiderato sia composto dalla sola componente

induttiva; sapendo che ciò costituisce una semplificazione peggiore della realtà. Infatti nel caso reale ci sarà anche la componente resistiva R_s che viene in aiuto al nostro choke. Per cui alla frequenza di lavoro f_l=1,83MHz possiamo considerare:

$$|Z| = X_s$$
 2.45

dove

$$X_s = \omega L_s = 2\pi f N^2 A_L \quad \Omega$$

A_L si può ricavare dalla 2.11 e dalle caratteristiche magnetiche della ferrite FT240-43 [3].

Ferrite FT240-43											
AL	1075 ±20%	nH/sp²									
A _e	1.58	cm ²									
l _e	14.5	cm									
V _e	22.8	cm ³									
B _{max}	2900	G									
T _C	>130	℃									
Tab.1											

$$A_L = 4\pi\mu_s \frac{A_e}{l_e} = 4\pi \cdot 620 \frac{1.58}{14.5} = 849 \text{ [nH/sp}^2\text{]}$$

2.47

Vi faccio notare che la tolleranza indicata dal costruttore è +/-20%; per questo motivo preferisco misurare l'effettivo A_L della ferrite che ho intenzione di usare. Dal grafico ottenuto misurando l'S₁₁ di una spira avvolta sulla ferrite in mio possesso (col VNWA di DG8SAQ [9]) si ottiene l'autoinduttanza della spira che corrisponde all' A_L (grafico color blu).

Fig.218 Per comodità di lettura riporto i valori in tabella 2.

FREQUENZA	A _L (nH/sp ²)	Rs (Ω)	Xs (Ω)	Zs (Ω)
1,830	974	3,5	11,2	11,7
3,650	687	9,6	15,8	18,5
7,100	471	17,0	21,1	27,1
10,450	370	23,2	24,3	33,7
14,225	295	29,4	26,4	39,5
18,150	240	34,7	27,4	44,2
21,250	207	38,3	27,6	47,2
24,950	175	42,0	27,6	50,3
28,500	152	45,1	27,3	52,7
50,100	75	57,0	23,6	61,7

Tabella 2

IW2FND Attolini Lucio, via XXV Aprile 52/b 26037 San Giovanni in Croce (CR)

Come potete vedere l'A_L misurato è 974nH/sp²; circa il 15% più alto del calcolato. Dalla 2.46 ponendo come A_L quello misurato di Tabella 2 ricaviamo il numero minimo di spire:

$$N = \sqrt{\frac{|Z|}{2\pi f A_L}} = \sqrt{\frac{900}{6,28 \cdot 1,83 \cdot 10^6 \cdot 974 \cdot 10^{-9}}} = \sqrt{\frac{900 \cdot 10^3}{6,28 \cdot 1,83 \cdot 974}} = 8,96 \approx 9$$
 Spire **2.48**

Tenendo come riferimento le 9 spire ricavate dalla 2.48 vediamo se X_s resta al di sopra dei 900 Ω su tutta la banda utile, sempre consci dell'approssimazione per difetto ed applicando alla 2.46 gli A_L della tabella 2, avremo:

f (MHz)	1,830	3,650	7,100	10,450	14,225	18,150	21,250	24,950	28,500
A _L (nH/sp²)	974	687	471	370	295	240	207	175	152
Xs (Ω)	907	1276	1701	1967	2135	2216	2238	2221	2204
IL (dB)	20,06	22,77	25,11	26,31	26,98	27,29	27,38	27,31	27,25
				Taball	<u> </u>				

Tabella 3

Dai dati di tabella 3 vediamo che in teoria X_s si mantiene sempre sopra i 900 Ω e che l' IL resta sempre oltre i 20dB richiesti su tutta la banda di utilizzo.

Sembra andare tutto bene anche con la sola stima della componente induttiva a cui verrà in aiuto la componente resistiva R_s ; quella che tiene conto delle perdite nella ferrite. Tutto ciò, però, verrà parzialmente eroso dalla capacità parassita C_P , a partire dalla frequenza del punto B; capacità che risulta difficile da stimare prima della costruzione del choke. Ma ora avvolgiamo il choke.

Per farlo usiamo la ferrite FT240-43, la stessa utilizzata prima nelle misure, ed un cavo coassiale in grado di sostenere la corrente di modo differenziale (quella che alimenta il carico bilanciato). Allo scopo ho utilizzato il cavo coassiale deformabile SM141-50 che ho acquistato in spezzoni da 1,2m alla fiera di Friedrichshafen. Dopo essermi accertato che fosse proprio 50 Ω , ho cercato le caratteristiche in rete [10]. Il coassiale deformabile, rispetto a quello flessibile (RG142 B/U), risulta: meglio conformabile; avere un diametro leggermente inferiore e mantenere la forma una volta avvolto. Le caratteristiche del cavo SM141-50 sono elencate in tabella 4.

SM141-50										
Z ₀	50	Ω								
К	0,695									
Diametro esterno	4,14	mm								
Tipo d'isolamento	PTFE									
Raggio min di curvatura	8	mm								
P _{MAX} @10MHz	3,45	kW								
V _{MAX}	1,9	kVrms								

Tabella 4

E' un cavo di tutto rispetto ed in grado di sopportare ben più dei canonici 500W concessi a noi OM Italiani.

Ora occorre trovare la lunghezza media della spira.

Il metodo più semplice ed immediato è quello di avvolgere una spira col coassiale individuato, contrassegnare col pennarello il punto d'incrocio e poi misurare la distanza tra i due segni. Nel nostro caso la spira media risulta essere lunga I_{wm} =70mm. Quindi, si ricava la lunghezza della linea avendo l'accortezza di aggiungere una spira allo spezzone per i collegamenti.

avvolte corrisponde al numero di tuffi del coassiale nel foro centrale; nella fattispecie

 $l_{WP} = l_{wm} \cdot (n_P + 1) = 70 \cdot (9 + 1) = 700$ [mm]

Avvolgiamo quattro spire da un lato poi passiamo dall'altra parte ed avvolgiamo le altre quattro spire; così avremo da un lato l'ingresso e dall'altro l'uscita. Il totale delle spire

4+1+4=9 spire (facendo l'inversione vengono sempre dispari). IW2FND Attolini Lucio, via XXV Aprile 52/b 26037 San Giovanni in Croce (CR) 2.49

Fig.219

Una volta realizzato ed intestato il choke per le misure, figura 219, passiamo alla verifica. Colleghiamo il choke all'analizzatore di rete, come in figura 212; V_g ed R_g sono all'interno del traking generator TX mentre la resistenza R_L è quella del detettore RX (le linee tratteggiate segnano i confini dello strumento). Misuriamo il parametro $|S_{21}|$ in dB e rappresentiamolo su scala di frequenze logaritmica, così potremo confrontarlo col diagramma di Bode di figura 206, ricordando che dalla 2.25 IL=-20Log $|S_{21}|$; quindi l' $|S_{21}|$ è uguale all'IL ma speculare rispetto al grafico di figura 206. La misura viene svolta con calza e centrale uniti assieme. Il risultato è quello riportato in figura 220.

Fig.220

Il marker n°10 rappresenta il punto B di figura 206 che corrisponde alla risonanza dovuta alla capacità parassita C_P. La frequenza del punto B è f_B=30,41MHz mentre il punto A è fuori scala a circa 18KHz (a 18KHz Rs≈0 e μ '=800).

Per comodità riporto i valori misurati dell'insertion loss in tabella 5.

f (MHz)	1,830	3,650	7,100	10,450	14,225	18,150	21,250	24,950	28,500
IL (dB)	20,43	24,22	27,68	29,74	31,33	32,36	32,84	33,10	33,01

E' sorprendente come il valore calcolato a 1,83MHz sia vicino a quello misurato. Ma la pendenza del tratto iniziale, fino al punto B, è leggermente meno di -20dB/dec mentre il tratto oltre il punto B è molto più ripido dei +20dB/dec attesi. Il grafico assomiglia a quello di figura 206, se visto specularmente, a meno delle pendenze. Ciò ci tranquillizza in merito alla bontà del modello circuitale nonostante non tenga conto dei parametri R_S ed L_S variabili con la frequenza.

Per curiosità calcoliamo il valore di C_P ottenuto avvolgendo le 9 spire nel modo che vedete in figura 219.

Dalle 2.10 e 2.11 ricaviamo l'induttanza L_S nel punto B ($f_B=30,41$ MHz) ed utilizzando il grafico di figura 203 (μ '=103@30MHz che è 90 maggiorato del 15%):

$$L_s = N^2 A_L = 4\pi \mu' N^2 \frac{A_e}{l_e} = 11423 \text{ [nH]} \quad \text{con } A_e \text{ in } \text{cm}^2 \text{ ed } l_e \text{ in } \text{cm}$$
 2.50

Posto N=9 spire, dalla tabella 1 troviamo che $A_e=1,58$ cm², $I_e=14,5$ cm. Ora esplicitando dalla 2.30b C_P si ottiene:

$$C_P = \frac{1}{4\pi^2 f_B^2 L_S} = \frac{10^{-3}}{39,48 \cdot (30,41)^2 \cdot 11423} = 2,39 \text{ pF}$$
 2.51

Per controllo misuriamo la capacità parassita col metodo suggerito da [6]. Montiamo il circuito di figura 207 e misuriamo le frequenze di risonanza rispettivamente con C₁=3,12pF e C₂=4,91pF (i condensatori in mica argentata che avevo nel cassetto). Troviamo rispettivamente f₁=8,033MHz ed f₂=6,982MHz. Dalla 2.18 ricaviamo:

$$C_{P} = C_{1} \frac{\frac{C_{2}}{C_{1}} \left(\frac{f_{2}}{f_{1}}\right)^{2} - 1}{1 - \left(\frac{f_{2}}{f_{1}}\right)^{2}} = 2,41pF$$
2.52

Le capacità trovate con la 2.51 e con la 2.52 differiscono meno dell' 1% pertanto direi che la capacità parassita possa essere considerata circa 2,4 pF; piccola ma dirompente. Verifichiamo ora le correnti di modo differenziale.

Iniziamo col trovare il valore del coefficiente di accoppiamento k. Misuriamo con un LCR meter [11] le induttanze $L_{pc}=0.6\mu$ H ed $L_{po}=111\mu$ H dalla 2.19 calcoliamo k=0,997; il dato è vicino all'unità come avevamo ipotizzato.

Ora, realizziamo il circuito di figura 214 e misuriamo col network il parametro scatter $|S_{11}|$; questo perchè l'impedenza vista dal piano di tratteggio di figura 214 genera una riflessione dell'onda incidente il cui coefficiente di riflessione Γ (gamma) è uguale a S_{11} quando la porta bilanciata è chiusa su 50 Ω [8]; come in questo caso.

Quindi, per poter avere un riscontro tra la teoria e la realtà delle misure in campo, dovremmo ottenere la Z_i , dal parametro scatter S_{11} . La relazione tra i due parametri è la seguente:

$$Z_i = Z_{out} \frac{1 + S_{11}}{1 - S_{11}}$$
 2.53

Dove Z_i è l'impedenza letta sulla porta sbilanciata del choke e Z_{out} è l'impedenza posta sulla porta bilanciata del choke. Il return loss RL; che esprime di quanto viene ridotta l'onda riflessa dalla porta d'ingresso del choke, quando l'uscita è chiusa su Z_{out} =50 Ω , si può ricavare dalla 2.54:

$$RL = -20Log|S_{11}| = -20Log|\Gamma| dB$$
 2.54

Pertanto, quando leggiamo sulla porta sbilanciata d'ingresso impedenze molto vicine a Z_{out} (in più o in meno) il $|S_{11}|$ diventa molto piccolo ed il return loss molto grande. Non è raro incontrare valori di RL maggiori di 50dB.

Dall' S_{11} si può ricavare anche l'SWR che si ha alla bocca d'ingresso del choke:

$$SWR = \frac{1 + |S_{11}|}{1 - |S_{11}|}$$

Il setup di misura è quello di figura 221:

Fig.221

La traccia dell' $|S_{11}|$ è quella nera in alto ed è rappresentata in ohm su tre decadi (da 0,1 a 100MHz).

Fig.222

Come potete osservare dalla figura 222, l' $|S_{11}|$ in dB resta sempre sotto ai -40dB quindi la Z_i si mantiene sempre vicino ai 50 Ohm e ciò vuol dire che l'SWR sta sempre molto vicino all'unità. In particolare si ha:

2.55

f (MHz)	1,830	3,650	7,100	10,450	14,225	18,150	21,250	24,950	28,500
S ₁₁ (dB)	-55,69	-51,89	-48,45	-46,46	-44,88	-43,80	-43,06	-42,30	-41,69
Re Zi (Ω)	50,08	50,15	50,26	50,35	50,46	50,55	50,62	50,70	50,78
lm Zi (<u>Ω</u>)	0,14	0,20	0,28	0,32	0,34	0,34	0,34	0,32	0,27
SWR	1,003	1,01	1,01	1,01	1,01	1,01	1,01	1,02	1,02

Tabella 6

Come la teoria aveva preannunciato la presenza del choke, praticamente, non influisce sulle correnti di modo differenziale.

Per completare il quadro diamo uno sguardo ai valori di frequenza entro i quali l'equazione 2.42 è soddisfatta.

Fig.223

Dal grafico di figura 223, che rappresenta il modulo dell'impedenza Z_c ed ottenuta dalla misura di S_{11} col choke posto tra la porta 1 e massa del VNA, misuriamo in corrispondenza di 10⁻R₂=250 Ω i valori di frequenza f_I=535KHz ed f_h=65,1MHz. Valori che abbracciano ampiamente tutto il campo di frequenze di progetto.

Considerazioni finali

Mi sembra che il choke che si è realizzato sia rispondente alle aspettative già con le 9 spire avvolte. Probabilmente a molti piacerebbe sapere cosa sarebbe successo se avessimo usato più spire. Per questo motivo pubblico la tabella 7 con i valori dell' IL e del punto B per valori crescenti dispari del numero di spire, fino al massimo consentito col cavo SM141-50 la ferrite FT240-43.

1,830	3,650	7,100	10,450	14,225	18,150	21,250	24,950	28,500	f _в (MHz)
20,43	24,22	27,68	29,74	31,33	32,36	32,84	33,10	33,01	30,41
23,81	27,70	31,42	33,74	35,55	36,35	36,35	35,80	34,79	20,20
26,65	30,60	34,53	37,11	38,99	39,24	38,63	37,40	35,88	16,63
29,13	33,25	37,54	40,39	41,74	40,28	38,77	36,86	35,02	13,78
31,39	35,81	40,72	43,30	42,32	38,94	36,99	34,86	32,98	10,41
	1,830 20,43 23,81 26,65 29,13 31,39	1,830 3,650 20,43 24,22 23,81 27,70 26,65 30,60 29,13 33,25 31,39 35,81	1,830 3,650 7,100 20,43 24,22 27,68 23,81 27,70 31,42 26,65 30,60 34,53 29,13 33,25 37,54 31,39 35,81 40,72	1,8303,6507,10010,45020,4324,2227,6829,7423,8127,7031,4233,7426,6530,6034,5337,1129,1333,2537,5440,3931,3935,8140,7243,30	1,8303,6507,10010,45014,22520,4324,2227,6829,7431,3323,8127,7031,4233,7435,5526,6530,6034,5337,1138,9929,1333,2537,5440,3941,7431,3935,8140,7243,3042,32	1,8303,6507,10010,45014,22518,15020,4324,2227,6829,7431,3332,3623,8127,7031,4233,7435,5536,3526,6530,6034,5337,1138,9939,2429,1333,2537,5440,3941,7440,2831,3935,8140,7243,3042,3238,94	1,8303,6507,10010,45014,22518,15021,25020,4324,2227,6829,7431,3332,3632,8423,8127,7031,4233,7435,5536,3536,3526,6530,6034,5337,1138,9939,2438,6329,1333,2537,5440,3941,7440,2838,7731,3935,8140,7243,3042,3238,9436,99	1,8303,6507,10010,45014,22518,15021,25024,95020,4324,2227,6829,7431,3332,3632,8433,1023,8127,7031,4233,7435,5536,3536,3535,8026,6530,6034,5337,1138,9939,2438,6337,4029,1333,2537,5440,3941,7440,2838,7736,8631,3935,8140,7243,3042,3238,9436,9934,86	1,8303,6507,10010,45014,22518,15021,25024,95028,50020,4324,2227,6829,7431,3332,3632,8433,1033,0123,8127,7031,4233,7435,5536,3536,3535,8034,7926,6530,6034,5337,1138,9939,2438,6337,4035,8829,1333,2537,5440,3941,7440,2838,7736,8635,0231,3935,8140,7243,3042,3238,9436,9934,8632,98

Nel grafico di figura 224 sono tracciati gli andamenti dell'IL ove potete constatare che l'attenuazione misurata continua ad aumentare nel primo tratto fino a B ed il punto B (punto rosso) si sposta a frequenze sempre più basse.

Fig.224

Ho anche provato ad avvolgere il choke in altro modo (figura 225) ma non ci sono variazioni significative rispetto a quello avvolto come in figura 219. L'unica differenza è che la porta sbilanciata e quella bilanciata del choke sono dalla stessa parte; ciò aggiunge una piccola capacità parassita dovuta alla vicinanza dei due "reofori".

Fig.225

Dato che la curiosità viene indagando, ho realizzato un toroide con le stesse dimensioni dell'FT240 in POM (Poli Ossi Metilene); commercialmente chiamato Delrin® cioè col nome del produttore: la ditta Dupont.

Fig.226

Il POM reagisce alla radiofrequenza in modo molto simile al PTFE (Poli TetraFluoro Etilene) ma ha caratteristiche meccaniche molto migliori. La permeabilità magnetica del POM è circa quella dell'aria quindi possiamo considerare l'avvolgimento essere avvolto come in aria. Il diagramma del modulo dell'impedenza che il choke di figura 226 offre alle correnti di modo comune è visualizzato in figura 227.

Fig.227

Come si può vedere l'autorisonanza è molto evidente e spostata a f=51,87MHz. La banda di utilizzo B_W del choke (a -20dB di attenuazione; circa 900 Ω) va da 38,66MHz a 68,06MHz (valori che corrispondono a circa 1000 Ω) ed è quindi di B_W =29MHz.

Potremmo pensare di utilizzare il choke nella banda dei 6m ma considerate che il semplice avvicinamento della mia mano all'avvolgimento fa cambiare la posizione e la forma della traccia (peggiorando il Q). Ciò vuol dire che gli oggetti ferromagnetici nelle vicinanze del choke influiscono maggiormente quando le spire sono avvolte in aria rendendo aleatorio l'utilizzo dello stesso choke. Sempre per curiosità ho avvolto le 9 e poi le 17 spire di cavo coassiale deformabile SM141-50 su di un tubetto di vetroresina con diametro esterno 16mm (ciò per non violare il raggio minimo di curvatura del coassiale; vedi tabella 4) ove ho infilato una bacchetta di ferrite (acquistata da [10] col codice BF-58) avente permeabilità µi=300, lunga 200mm e con diametro 12mm. La bacchetta è stata infilata all'interno del tubetto di vetroresina con avvolte sopra, prima, 9 e poi 17 spire come in figura 228.

Fig.228

Poi ho misurato l'impedenza del choke come descritto in figura 212. I risultati sono in figura 229.

Fig.229

Le tracce nere sono quelle ottenute senza la ferrite inserita mentre quelle rosse sono quelle ottenute con la ferrite inserita. I grafici rosso più alto e quello nero a frequenza più bassa sono quelli ottenuti con 17 spire mentre i corrispondenti altri sono ottenuti con 9 spire; riassumo in tabella 8 i valori ricavati guando la bacchetta di ferrite è inserita.

9 spire	Min	Picco	Max						
Frequenza MHz	9,34	20,86	44,28						
Impedenza Ω	958	4943	929						
17 spire									
Frequenza MHz	4,13	11,78	35,51						
Impedenza Ω	951	9785	938						
Taballa 0									

Tabella 8

Non è difficile capire che scegliendo opportunamente il numero delle spire si possono centrare le bande ove si vogliono attenuare le CMC. Ho notato che spostando la bacchetta più a destra (o più a sinistra) si spostano in alto le frequenze ma si abbassa il valore dell'impedenza; ciò permette, entro certi limiti, di tarare meglio il choke. Ho fatto prove anche con la bacchetta BF-55 (sempre presa da [10]), che ha una permeabilità maggiore μ i=400 ma un diametro di 10mm e lunga sempre 200mm ma ha dato risultati molto scarsi. Non avendo alcuna caratteristica relativa alla mescola delle ferriti in mio possesso non so dare una spiegazione all'accaduto ma solo fare delle ipotesi.

Ho anche misurato il fattore d'induttanza A_L di altri toroidi di gradazione diversa che riporto per completezza in tabella 9.

		FT24	0-31		FT240-52				FT240-61			
FREQUENZA	A _L (nH/sp ²)	Rs (Ω)	Xs (Ω)	Zs (Ω)	A _L (nH/sp ²)	Rs (Ω)	Xs (Ω)	Zs (Ω)	A _L (nH/sp ²)	Rs (Ω)	Xs (Ω)	Zs (Ω)
1,830	1656	11,7	19,1	22,4	339	0,0	3,9	3,9	136	0,0	1,6	1,6
3,650	899	22,8	20,6	30,7	359	0,3	8,2	8,2	137	0,0	3,2	3,2
7,100	465	30,8	20,9	37,2	381	4,9	17,0	17,7	140	0,1	6,3	6,3
10,450	349	35,2	22,9	42,0	306	11,5	20,1	23,2	146	0,4	9,6	9,6
14,225	279	40,1	25,0	47,3	237	16,0	21,2	26,6	151	1,3	13,5	13,6
18,150	231	44,7	26,4	52,0	194	19,1	22,2	29,3	155	2,9	17,7	17,9
21,250	203	48,0	27,1	55,8	172	20,9	23,0	31,1	156	4,9	20,9	21,5
24,950	175	51,6	27,5	61,3	154	22,8	24,2	33,2	153	8,3	24,3	25,5
28,500	154	54,7	27,6	72,3	141	24,4	25,4	35,3	144	11,9	25,9	28,5
50,100	81	67,6	25,5	61,7	102	34,2	32,3	47,0	88	25,3	27,7	37,5

Tabella 9

Infine, la domanda che sorge spontanea è: dove è meglio mettere il choke?

La risposta è dove vi sono correnti di modo comune da bloccare.

Le correnti di modo comune sono dovute allo spostamento delle cariche nei conduttori della linea, nella stessa direzione in entrambi i conduttori, pertanto il punto migliore per bloccarle è vicino al punto in cui si originano. Per esempio: se si tratta di un dipolo radiante è meglio posizionare il choke il più vicino possibile ai morsetti dell'antenna, per evitare che il cavo diventi parte radiante della stessa con conseguente grave deformazione del lobo di radiazione dell'antenna.

Bibliografia

- [1] K. Kaiser: Electromagnetic compatibility handbook ed. CRC Press, 2005.
- [2] Fair-Rite: Technical Information: how to choose ferrite components for EMI suppression; Fair-Rite Products Corp.
- [3] Fair-Rite https://www.fair-rite.com/
- [4] M. F. "Doug" DeMaw: Ferromagnetic-core design and application handbook, Prentice-Hall, 1981.
- [5] E. C. Snelling: Soft Ferrites, ed. Ilieffe Books Ltd, 1969.
- [6] Qin Yu, Thomas W. Holmes: A study on stray capacitance modeling of inductors by using the finite element method. IEEE vol.43 2001.
- [7] AN4511 ST Microelectronics 2016.
- [8] D. M. Pozar: Microwave Engineering, 3° ed. John Wiley & Sons, 2005.
- [9] https://www.sdr-kits.net/DG8SAQ-VNWA3-3E-specification

[10] https://www.rf-microwave.com/it/home/[11] Misura eseguita con LCR Meter HP 4261A @1kHz.